Supporting Information

Prolonged Biodegradation and Improved Mechanical Stability of Collagen via Vapor-Phase Ti Stitching for Long-Term Tissue Regeneration

Seunghwan Choy,† Do Van Lam,‡§ Seung-Mo Lee,*‡§ Dong Soo Hwang*†▽

† Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Korea
‡ Department of Nanomechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea
§ Nano Mechatronics, Korea University of Science and Technology (UST), 217 Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, Korea
▽ Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Korea

* Corresponding author: Prof. D. S. Hwang (dshwang@postech.ac.kr)
Figure S1. (a) TEM image and (b) SEM image of helical patterns in CM/Ti (yellow arrow, TiO$_2$ at surfaces; triangle, infiltrated Ti into collagen fibers).
Figure S2. (a) Observation of wedged specimens in subcutaneous pouches of CM (pristine), CM/400Ti (400-cycle ALD), and CM/1200Ti (1200-cycle ALD) taken by digital camera before harvesting. (b) MT-stained optical microscopic images for non-implanted controls.