A molecular tweezers-like calix[4]arene based alkaline earth metal cation (Ca$^{2+}$, Sr$^{2+}$ & Ba$^{2+}$) chemosensor and its imaging in living cells and zebrafish

Jun-An Fang,† † Jiang-Lin Zhao,*† Xian Liao,‡ Xi Zeng,*‡ Kai Chen,⊥ Xiao-Yuan Wei,† Shao-Bo Su,† Qing-Ying Luo,† Carl Redshaw§ and Zongwen Jin*†

† Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China. E-mail: jl.zhao@siat.ac.cn (J.-L. Zhao); zw.jin@siat.ac.cn (Z. Jin)

‡ Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; School of Chemistry and Chemical engineering, Guizhou University, Guiyang 550025, China. E-mail: zengxi1962@163.com (X. Zeng)

⊥ Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.

§ Dept. of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, U.K.
Figure S1. 1H NMR spectrum of sensor L (400MHz, DMSO-d_6/D$_2$O = 9/1, 293 K).

Figure S2. 13C NMR spectrum of sensor L (100MHz, DMSO-d_6/D$_2$O = 9/1, 293 K).
Figure S3. ESI-HRMS spectrum of sensor L.
Figure S4. The max absorbance (a) and max fluorescence emission (b) of sensor L (10 μM) with or without 20 equiv. Ca$^{2+}$, Sr$^{2+}$ or Ba$^{2+}$ cations at different water content. The max absorbance (c) and max fluorescence emission (d) of sensor L (10 μM) with or without 20 equiv. Ca$^{2+}$, Sr$^{2+}$ or Ba$^{2+}$ cations under different pH.

Figure S5. The Job's plot data of sensor L with Ca$^{2+}$ (a), Sr$^{2+}$ (b) and Ba$^{2+}$ (c).
Figure S6. Absorption spectra (a) or fluorescence spectra (b, $\lambda_{ex} = 405$ nm) changes of sensor L (10 μM, DMF/H$_2$O = 9/1, pH = 8.5) solution upon addition of Sr$^{2+}$ (0 ~ 3 equiv.). Inset: the plot of absorption or fluorescence intensity of sensor L as a function of Sr$^{2+}$ concentration.

Figure S7. Absorption spectra (a) or fluorescence spectra (b, $\lambda_{ex} = 405$ nm) changes of sensor L (10 μM, DMF/H$_2$O = 9/1, pH = 8.5) solution upon addition of Ba$^{2+}$ (0 ~ 3 equiv.). Inset: the plot of absorption or fluorescence intensity of sensor L as a function of Ba$^{2+}$ concentration.
Figure S8. Absorption response of (a) sensor $L + \text{Ca}^{2+}$ at 560 nm, (b) $L + \text{Sr}^{2+}$ at 570 nm and (c) $L + \text{Ba}^{2+}$ at 580 nm with competing cations. Blue bars: The absorbance of sensor L on addition of the respective cations (20 equiv.). Red bars: The absorbance of $L \cdot \text{Ca}^{2+}$, $L \cdot \text{Sr}^{2+}$ and $L \cdot \text{Ba}^{2+}$ complex on addition of the respective competing cations (20 equiv.).
Figure S9. Fluorescence response of (a) sensor L + Ca$^{2+}$, (b) L + Sr$^{2+}$ and (c) L + Ba$^{2+}$ with competing cations. Red bars: The fluorescence intensity of sensor L on addition of the respective cations (20 equiv.). Blue bars: The fluorescence intensity of L\cdotCa$^{2+}$, L\cdotSr$^{2+}$ and L\cdotBa$^{2+}$ complex on addition of the respective competing cations (20 equiv.). $\lambda_{ex}/\lambda_{em} = 405 \text{ nm}/510 \text{ nm}$.
Figure S10. (a) Absorbance calibration curve of sensor L (10 μM) at 560 nm as a function of Ca$^{2+}$ concentration in DMF/H$_2$O (v/v, 9/1, pH = 8.5) solution. LOD = 1.33 × 10$^{-7}$ μM; (b) Absorbance calibration curve of sensor L (10 μM) at 570 nm as a function of Sr$^{2+}$ concentration in DMF/H$_2$O (v/v, 9/1, pH = 8.5) solution. LOD = 1.53 × 10$^{-7}$ μM; (c) Absorbance calibration curve of sensor L (10 μM) at 580 nm as a function of Ba$^{2+}$ concentration in DMF/H$_2$O (v/v, 9/1, pH = 8.5) solution. LOD = 2.23 × 10$^{-7}$ μM.
Figure S11. (a) Fluorescence calibration curve of sensor L (10 μM) at 560 nm as a function of Ca$^{2+}$ concentration in DMF/H$_2$O (v/v, 9/1, pH = 8.5) solution. LOD = 7.51 × 10^{-8} μM; (b) Fluorescence calibration curve of sensor L (10 μM) at 570 nm as a function of Sr$^{2+}$ concentration in DMF/H$_2$O (v/v, 9/1, pH = 8.5) solution. LOD = 9.08 × 10^{-8} μM; (c) Fluorescence calibration curve of sensor L (10 μM) at 580 nm as a function of Ba$^{2+}$ concentration in DMF/H$_2$O (v/v, 9/1, pH = 8.5) solution. LOD = 1.44 × 10^{-7} μM.
Figure S12. (a) Non-linear plot of sensor \(L \) (10 μM) assuming a 1:1 stoichiometry for association between sensor \(L \) and \(\text{Ca}^{2+} \) in DMF/H\(_2\)O (v/v, 9/1, pH = 8.5) solution by absorption spectroscopy, \(\lambda_{\text{max}} = 560 \) nm; (b) Non-linear plot of sensor \(L \) (10 μM) assuming a 1:1 stoichiometry for association between sensor \(L \) and \(\text{Sr}^{2+} \) in DMF/H\(_2\)O (v/v, 9/1, pH = 8.5) solution by absorption spectroscopy, \(\lambda_{\text{max}} = 570 \) nm; (c) Non-linear plot of sensor \(L \) (10 μM) assuming a 1:1 stoichiometry for association between probe \(L \) and \(\text{Ba}^{2+} \) in DMF/H\(_2\)O (v/v, 9/1, pH = 8.5) solution by absorption spectroscopy, \(\lambda_{\text{max}} = 580 \) nm.\(^1\)
Figure S13. (a) Non-linear plot of sensor L (10 μM) assuming a 1:1 stoichiometry for association between sensor L and Ca$^{2+}$ in DMF/H$_2$O (v/v, 9/1, pH = 8.5) solution by fluorescence spectroscopy; (b) Non-linear plot of sensor L (10 μM) assuming a 1:1 stoichiometry for association between sensor L and Sr$^{2+}$ in DMF/H$_2$O (v/v, 9/1, pH = 8.5) solution by fluorescence spectroscopy; (c) Non-linear plot of sensor L (10 μM) assuming a 1:1 stoichiometry for association between probe L and Ba$^{2+}$ in DMF/H$_2$O (v/v, 9/1, pH = 8.5) solution by fluorescence spectroscopy.1
Figure S14. Partial 1H NMR spectra of sensor L and increasing concentrations (0 ~ 2.0 equiv.) of Ca$^{2+}$ in DMSO-d_6/D$_2$O = 9/1 at 298K.

Figure S15. Partial 1H NMR spectra of sensor L and increasing concentrations (0 ~ 2.0 equiv.) of Tris in DMSO-d_6/D$_2$O = 9/1 at 298K.
Figure S16. Partial 1H NMR spectra of sensor L with 2.0 equiv. Tris and increasing concentrations (0 ~ 2.5 equiv.) of Ca$^{2+}$ in DMSO-d_6/D$_2$O = 9/1 at 298K. Blue peaks assigned to sensor L; Red peaks assigned to sensor L after complex; Green peaks assigned to Tris.

Figure S17. Partial 1H NMR spectra of sensor L with 3.0 equiv. Tris and increasing concentrations (0 ~ 10.0 equiv.) of Sr$^{2+}$ in DMSO-d_6/D$_2$O = 9/1 at 298K. Blue peaks assigned to sensor L; Red peaks assigned to sensor L after complex; Green peaks assigned to Tris.
Figure S18. Partial 1H NMR spectra of sensor L with 3.0 equiv. Tris and increasing concentrations (0 ~ 3.0 equiv.) of Ba$^{2+}$ in DMSO-d_6/$D_2O = 9/1$ at 298K. Blue peaks assigned to sensor L; Red peaks assigned to sensor L after complex; Green peaks assigned to Tris.

Figure S19. Fluorescence microscopy images of Hela cells treated with 0 μM, 10 μM, 25 μM, 50 μM, 100 μM and 200 μM sensor L under Bright field and Green channel, respectively.
Figure S20. Assessment of cytotoxicity of different concentrations of sensor L for 24 h Hela cells using the cytotoxicity assay (CCK-8 assay). Error bars stand for the mean ± SD of at least triplicate experiments. *P < 0.05, **P < 0.01, ***P < 0.001.

Reference: