Impact of Charge Correlation, Chain Rigidity and Chemical Specific Interactions on the Behavior of Weak Polyelectrolytes in Solution

Andrea Tagliabue,† Lorella Izzo,‡ and Massimo Mella*,†

Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 9, 22100, Como, Italy, and Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, via J. H. Dunant 3, 21100, Varese, Italy

E-mail: massimo.mella@uninsubria.it

*To whom correspondence should be addressed
†Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 9, 22100, Como, Italy
‡Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, via J. H. Dunant 3, 21100, Varese, Italy
Figure S1: ΔpK_a as function of α for different number of chains in the cell, precisely for $n = 8$ (solid lines, squares), $n = 2$ (dashed lines, circles) and $n = 1$ (dotted-dashed lines, triangles). Since the number of monomers for each chain is $L = 15$, $n = 1, 2, 8$ correspond to values of chains concentration equal to $C \simeq 1.37 \cdot 10^{-3}$ M, $2.74 \cdot 10^{-3}$ M, $1.10 \cdot 10^{-2}$ M, and, since $L = 15$, to values of monomers concentration equal to $C_m \simeq 2.06 \cdot 10^{-2}$ M, $4.11 \cdot 10^{-2}$ M, and $1.65 \cdot 10^{-1}$ M, respectively. The following cases are presented: flexible chains with ($\zeta = 2, k_{bend} = 0$, green) and without ($\zeta = 0, k_{bend} = 0$, black) MB interactions, and semi-rigid chains with ($\zeta = 2, k_{bend} = 2 \cdot 10^{-3} k_B T/\text{deg}^2$, red) and without ($\zeta = 0, k_{bend} = 2 \cdot 10^{-3} k_B T/\text{deg}^2$, light blue) the possibility to form c-H-bonds. The dotted gray line is a guide for the eye useful to discern negative and positive values of ΔpK_a. Standard error bars are smaller than plot symbols when not visible.
Figure S2: Dissociation degree α as function of the control parameter $\text{pH} - pK_a$ for the same cases presented in Figure S1 (the color scheme is maintained). Here, the dotted gray line indicates the ideal behavior predicted by the Henderson-Hasselbalch equation. Standard error bars are smaller than plot symbols when not visible.
Figure S3: Hydrodynamic radius R_H as function of α (top panels) or pH - pK_a (bottom panels) for the same cases presented in Figure S1 (the color scheme is maintained).
Figure S4: End-to-end distance r_{1N} as function of α and pH - pK_a. The scheme is the same as in Figure S3.
Figure S5: Pair distribution functions calculated between monomers (both neutral and charged) and counterions, with (dashed lines) and without (solid lines) MB interactions. Shown are data for different dissociation degree values: \(\alpha \approx 0.25 \) (pink), \(\alpha \approx 0.50 \) (blue), \(\alpha \approx 0.75 \) (olive green), \(\alpha \approx 0.90 \) (orange), \(\alpha \approx 1.00 \) (black). (a) flexible chains; (b) semi-rigid chains. Each distribution value has been divided by the corresponding volume element.
Figure S6: Trajectory snapshots for $n = 8$ flexible chains and $\zeta = 0$ interactions with different dissociation degrees: (a) $\alpha = 0.25$, (b) $\alpha = 0.50$, (c) $\alpha = 0.75$, (d) $\alpha = 1.00$. Color scheme: neutral monomers in dark gray, charged monomers in pink, counterions in white; the first and the last monomer of each chain are depicted in red and blue, respectively.
Figure S7: Trajectory snapshots for $n = 8$ semi-rigid chains and $\zeta = 0$ with different dissociation degrees: (a) $\alpha = 0.25$, (b) $\alpha = 0.50$, (c) $\alpha = 0.75$, (d) $\alpha = 1.00$. Color scheme as in Figure S6.
Figure S8: Trajectory snapshots for $n = 8$ flexible chains and $\zeta = 2$ for different dissociation degrees: (a) $\alpha = 0.25$, (b) $\alpha = 0.50$, (c) $\alpha = 0.75$, (d) $\alpha = 0.80$, (e) $\alpha = 0.90$, (f) $\alpha = 1.00$. Color scheme as in Figure S6.
Figure S9: Trajectory snapshots for $n = 8$ semi-rigid chains and $\zeta = 2$ for different dissociation degrees: (a) $\alpha = 0.25$, (b) $\alpha = 0.50$, (c) $\alpha = 0.75$, (d) $\alpha = 0.80$, (e) $\alpha = 0.90$, (f) $\alpha = 1.00$. Color scheme as in Figure S6.
Figure S10: Ω in kcal/(mol K) as versus: (a), (b) pH - pK_a; (c) α.
Figure S11: Dissociation degree α as function of the control parameter pH - pK_a calculated for different d_{CoM} intervals. The color scheme is the same as in Figure S1. Here, the dashed gray line indicates the ideal behavior predicted by the Henderson-Hasselbalch equation. In order to make the chart more readable, error bars has been plotted only for the 'INT 03' case.
Figure S12: Trajectory snapshots for 2 flexible chains and $\zeta = 0$ at different pH - pK$_a$ values and $d_{\text{CoM}s}$ distances. Color scheme as in Figure 6.
Figure S13: Trajectory snapshots for 2 semi-rigid chains and $\zeta = 0$ at different pH - pK_a values and $d_{\text{CoM}s}$ distances. Color scheme as in Figure 6.
Figure S14: Trajectory snapshots for 2 flexible chains and $\zeta = 2$ at different pH - pK_a values and d_{CoM_s} distances. Color scheme as in Figure 6.
Figure S15: Trajectory snapshots for 2 semi-rigid chains and \(\zeta = 2 \) at different pH - pK\(_a\) values and \(d_{\text{CoMs}} \) distances. Color scheme as in Figure 6.
Figure S16: Total potential U_{tot} (in kcal/mol) as function of α for different intervals of d_{CoMs}. (a) flexible, $\zeta = 0$; (b) semi-rigid, $\zeta = 0$; (c) flexible, $\zeta = 2$; (d) semi-rigid, $\zeta = 2$.
Figure S17: Total potential energy U_{tot} as function of pH - pKα: (a) $\zeta = 0$, flexible; (b) $\zeta = 0$, semi-rigid; (c) $\zeta = 2$, flexible; (d) $\zeta = 2$, semi-rigid.
Figure S18: End-to-end distance r_{1N} as function of pH - pK_a. (a) flexible chains; (b) semi-rigid chains.