Supporting Information

Two-Dimensional Electron Gases at LaAlO$_3$/SrTiO$_3$ Nanostructured Heterointerfaces with a Buffering Layer for Oxide-based Electronics

Hong Yan, Zhaoting Zhang, Cong Bi, Shuanhu Wang, Ming Li, Lixia Ren, Changle Chen, Kexin Jin*

Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science, Northwestern Polytechnical University, Xi’an 710072, China

* Author to whom correspondence should be addressed; e-mail: jinkx@nwpu.edu.cn
Figure S1. XRR image of the samples LAO and LSAT deposited for 1h on STO substrates.

Figure S2. Temperature dependence of sheet resistance for the LAO/STO with different LAO film thickness.
Figure S3. Time evolution of the resistance at LAO(0.4 nm)/LSAT(0.4 nm)/STO heterointerfaces under light illumination at different temperatures.

Figure S4. Time evolution of the resistance at LAO(0.8 nm)/LSAT(0.4 nm)/STO heterointerfaces under light illumination (a) at \(T < 100 \) K and (b) at \(T > 100 \) K.
Figure S5. Time evolution of the resistance at LAO(1.6 nm)/LSAT(0.4 nm)/STO heterointerfaces under light illumination at different temperatures.

Figure S6. Time evolution of the resistance at LAO(3.2 nm)/LSAT(0.4 nm)/STO heterointerfaces under light illumination at different temperatures.
Figure S7. Time evolution of the resistance at LAO(6.4 nm)/LSAT(0.4 nm)/STO heterointerfaces under light illumination at different temperatures.

Figure S8. Time evolution of the resistance at LAO(3.2 nm)/LSAT(0.8 nm)/STO heterointerfaces under light illumination at different temperatures.
Figure S9. Temperature dependence of resistance of 1.2 nm LAO/STO heterointerface before and after light illumination in dark.

Figure S10. Temperature dependence of carrier density and carrier mobility for the (1.6, 0.4) sample.
Figure S11. Photoinduced percentage change (a) ΔR_p and (b) ΔR_s in resistance as a function of temperature at LAO/STO heterointerface, $\Delta R_p = (R_d - R_p)/R_d$, $\Delta R_s = (R_d - R_b)/R_d$.

Figure S12. Comparison of the relaxation time constant (τ) of (a) $(m, 0.4)$, (b) $(3.2, n)$, and $(m, 0)$ samples. τ is calculated by a stretched exponential of the form $R \propto \exp\left[-\frac{T}{\tau}\right]$ with $0 \leq \beta \leq 1$.