Supporting Information

Enhanced Mechanical Properties of Na$_{0.02}$Pb$_{0.98}$Te/MoTe$_2$ Thermoelectric Composites Through $\textit{in-situ}$ Formed MoTe$_2$

Ting Zhu,† Hongyao Xie,† Cheng Zhang,† Xin Cheng,† Jian Zhang,† Pierre Ferdinand Poudeu Poudeu,|| Gangjian Tan,† Yonggao Yan,† Wei Liu,† Xianli Su,* Xinfeng Tang,‡*

† State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuh an 430070, China

|| Laboratory for Emerging Energy and Electronic Materials (LE3M), Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

Corresponding Author: suxianli@whut.edu.cn, tangxf@whut.edu.cn
Figure S1. Samples prepared for the measurement of compressive strength test, bending strength test and fracture toughness test.

Figure S2. (a) BSE image and (b) elemental distribution map of the polished surface for Na_{0.02}Pb_{0.98}Te sample

Figure S3. (a) The compressive strength-displacement curves and (b) the bending strength-displacement curves of Na_{0.02}Pb_{0.98}Te-xMoTe_{2} (x = 0, 0.001, 0.005, 0.01 and 0.02).
Table S1. Lattice parameters of PAS-sintered Na\textsubscript{0.02}Pb\textsubscript{0.98}Te\textsubscript{x}MoTe\textsubscript{2} (x = 0, 0.001, 0.005, 0.01 and 0.02) samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>x=0</th>
<th>x=0.1%</th>
<th>x=0.5%</th>
<th>x=1%</th>
<th>x=2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice Parameters (Å)</td>
<td>6.4634</td>
<td>6.4634</td>
<td>6.4628</td>
<td>6.4628</td>
<td>6.4629</td>
</tr>
</tbody>
</table>