Supporting Information

RGD-modified nanocarrier-mediated targeted delivery of HIF-1α-AA plasmid DNA to cerebrovascular endothelial cells for ischemic stroke treatment

Lingna Deng¹, Fang Zhang², Yanlin Wu³, Jiahao Luo³, Xuhong Mao⁴, Lingli Long⁵, Maling Gou⁶, Liqun Yang³**, David Y. B. Deng¹**

Pages: 2; figures: 3 (color figures: 3).
Figure S1. Characterization of RGD-DMAAm-Amy/HIF-1α-AA complexes. (A) Agarose gel electrophoresis of RGD-DMAAm-Amy/HIF-1α-AA complexes at various weight ratios. (B) Detection of particle size changes showing stability of RGD-DMAAm-Amy/HIF-1α-AA polyplex after incubation with 10% fetal bovine serum (FBS).

Figure S2. Erythrocytes aggregation assay. There was no obvious aggregation of erythrocytes caused by RGD-DMAAm-Amy and DMAAm-Amy NS: normal saline. Scale bar, 200 µm.
S2

Figure S3. Systemic toxicity evaluation of complexes in rats. After treatment with FITC-RGD-DMAPA-Amyp or FITC-DMAPA-Amyp via carotid arterial injection, hematoxylin and eosin (H&E) staining and fluorescence imaging were performed on the vital organs. No obvious pathological change and fluorescence residue (FITC) was observed in the kidney or liver of rats (blue, Hoechst 33342 indicating nuclei). Scale bar, 200 µm.