Improved Damping and High Strength of Graphene-Coated Nickel Hybrid Foams

Han Wang1,2, Chaoqun Ma1, Weimin Zhang1,2, Hui-Ming Cheng1,2,3, You Zeng1,2,*

1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China.
2. School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China.
3. Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, P.R. China

*Corresponding Author: yzeng@imr.ac.cn
Table of Contents

1) **Figure S1.** (a) HRTEM image and (b) Raman spectrum of graphene grown onto nickel foams.

2) **Figure S2.** (a) SEM image of the graphene/nickel hybrid foams at 2000×magnifications; EDS mapping images showing distribution of (b) carbon and (c) nickel atoms.

3) **Figure S3.** XPS survey scan spectrum of graphene/nickel hybrid foams.

4) **Figure S4.** SEM images of graphene/nickel hybrid foams before (a-b) and after (c-e) dynamic mechanical measurements at different magnifications.
Figure S1. (a) HRTEM image and (b) Raman spectrum of graphene grown onto nickel foams.
Figure S2. (a) SEM image of the graphene/nickel hybrid foams at 2000 × magnifications; EDS mapping images showing distribution of (b) carbon and (c) nickel atoms.
Figure S3. XPS survey scan spectrum of graphene/nickel hybrid foams.
Figure S4. SEM images of graphene/nickel hybrid foams before (a-b) and after (c-e) dynamic mechanical measurements at different magnifications.