Figure S1 shows the swelling profiles for the poly(NIPAAm) coatings used in this study. The dry and swollen profiles of poly(NIPAAm-co-MABP) cross-linked coatings were measured with a home-built variable-angle ellipsometer in an ATR (attenuated total reflection) configuration. The light-source is a He–Ne laser with a wavelength of $\lambda = 633$ nm. The refractive index of the LaSFN9 prism is $n = 1.845$, and in contact with water, the critical angle of total reflection is 46.7°. The thickness of all films was in the range (10-200 nm), giving rise to sufficient features in the recorded spectra to infer the refractive index profile. To analyze the data, model refractive index profiles were generated, and the ellipsometric parameters were numerically calculated using the matrix optical formulation. The parameters of the model were adjusted to minimize the differences between the simulation and experimental data.
Figure S1. Swelling profiles of the poly(NIPAAm-co-MaBP) coatings as a function of MaBP content and temperature used in this study.

Figure S2 shows a microscopy image of 10 µm PS-COOH microspheres adsorbed to a 15 nm thick poly(NIPAAm-co-3%MaBP) coating at 24 °C. The image represents a 1 mm2 section of the surface, and the areal coverage is approximately 1000 microspheres, which represents 10% surface coverage.

Figure S2. Distribution of PS-COOH microspheres adsorbed to a 15 nm thick poly(NIPAAm-co-3%MaBP) coating at 24 °C.
Figure S3 shows an image of fluorescently-labeled IgG coupled to the PS-COOH microspheres adsorbed to a 15 nm thick poly(NIPAAm-co-3%MaBP) coating at 24 °C. The image represents a 1 mm² section of the surface, and the areal coverage is approximately 1000 microspheres, which represents 10% surface coverage.

Figure S3. Distribution of PS-IgG microspheres coupled with FITC labeled IgG adsorbed to a 15 nm thick poly(NIPAAm-co-3%MaBP) coating at 24 °C.