Supporting information for

High Performance Sm-Doped Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_3$-PbZrO$_3$-PbTiO$_3$ Based Piezoceramics

Qinghu Guo†, Fei Li§, Fangquan Xia$^\|$, Xiaoyi Gao†, Pengbin Wang†, Hua Hao*‡, Huajun Sun†, Hanxing Liu†, Shujun Zhang*$^\perp$

†State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, and
‡State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center for Smart Materials and Device Integration, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

§Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China.

$^\|$School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.

$^\perp$Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia.

Corresponding Author

* E-mail: haohua@whut.edu.cn (H.H.)

* E-mail: shujun@uow.edu.au (S.J.Z.)
Figure S1. (a) The XRD patterns (Cu Kα1) of Sm-doped PMN-PZ-xPT ceramics; (b) enlarged XRD patterns of Sm-doped PMN-PZ-xPT ceramics in the vicinity of 2θ=44°-46°.

Table S1. Refined results of Sm-doped PMN-PZ-xPT ceramics using R3m and P4mm space group.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Structure</th>
<th>Fraction (%)</th>
<th>Lattice parameters</th>
<th>Agreement factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=0.332</td>
<td>R3m</td>
<td>100</td>
<td>a=4.0484 Å, α=89.928°</td>
<td>3.67, 5.11, 2.84</td>
</tr>
<tr>
<td></td>
<td>P4mm</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x=0.342</td>
<td>R3m</td>
<td>78.4</td>
<td>a=4.0473 Å, α=89.937°</td>
<td>3.79, 5.07, 2.91</td>
</tr>
<tr>
<td></td>
<td>P4mm</td>
<td>21.6</td>
<td>a=4.0418 Å, c=4.0593 Å</td>
<td></td>
</tr>
<tr>
<td>x=0.352</td>
<td>R3m</td>
<td>30.3</td>
<td>a=4.0447 Å, α=89.961°</td>
<td>3.68, 5.02, 3.06</td>
</tr>
<tr>
<td></td>
<td>P4mm</td>
<td>69.7</td>
<td>a=4.0301 Å, c=4.0695 Å</td>
<td></td>
</tr>
<tr>
<td>x=0.362</td>
<td>R3m</td>
<td>13.8</td>
<td>a=4.0425 Å, α=89.971°</td>
<td>4.09, 5.82, 2.93</td>
</tr>
<tr>
<td></td>
<td>P4mm</td>
<td>86.2</td>
<td>a=4.0254 Å, c=4.0743 Å</td>
<td></td>
</tr>
<tr>
<td>x=0.372</td>
<td>R3m</td>
<td>0</td>
<td></td>
<td>5.39, 7.48, 2.96</td>
</tr>
<tr>
<td></td>
<td>P4mm</td>
<td>100</td>
<td>a=4.0223 Å, c=4.0761 Å</td>
<td></td>
</tr>
</tbody>
</table>
Table S2. Density of Sm-doped PMN-PZ-0.352PT ceramic at different sintering temperatures

<table>
<thead>
<tr>
<th>Sintered temperature (°C)</th>
<th>1220</th>
<th>1240</th>
<th>1250</th>
<th>1270</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm3)</td>
<td>7.71</td>
<td>7.76</td>
<td>7.79</td>
<td>7.65</td>
</tr>
</tbody>
</table>