Reptation of active entangled polymers

SUPPLEMENTARY INFO

Andrés R. Tejedor and Jorge Ramírez*

Department of Chemical Engineering,
Universidad Politécnica de Madrid,
José Gutiérrez Abascal 2, 28006, Madrid, Spain

(Dated: August 2, 2019)
I. ANALYTICAL SOLUTION FOR THE TUBE SEGMENT SURVIVAL FUNCTION.

In order to compute the tube segment survival function \(\psi(s, t) \), we start by calculating the function \(\Psi(\xi, t; s) \). The partial differential equation that describes the dynamics of \(\Psi(\xi, t; s) \) and the boundary and initial conditions are

\[
\frac{\partial \Psi}{\partial t} + c \frac{\partial \Psi}{\partial \xi} = D_c \frac{\partial^2 \Psi}{\partial \xi^2},
\]

\[
\Psi(\xi, 0; s) = \delta(\xi + s - L),
\]

\[
\Psi(0, t; s) = \Psi(L, t; s) = 0.
\]

(1)

Following the procedure describe in [1], we can try solutions of the form

\[
\Psi(\xi, t; s) = \phi(\xi, t; s) \exp\left(\alpha \xi + \beta t\right).
\]

(2)

where \(\alpha \) and \(\beta \) are arbitrary parameters. Substituting (2) in the differential equation (1), we get

\[
\frac{\partial \phi}{\partial t} + (\beta + c \alpha - D_c \alpha^2) \phi = (2D_c \alpha - c) \frac{\partial \phi}{\partial \xi} + D_c \frac{\partial^2 \phi}{\partial \xi^2}
\]

(3)

We can choose the values of \(\alpha = c/2D_c \) and \(\beta = -c^2/4D_c \) so that the differential equation (3) is simplified to

\[
\frac{\partial \phi}{\partial t} = D_c \frac{\partial^2 \phi}{\partial \xi^2},
\]

(4)

with initial and boundary conditions given by

\[
\phi(\xi, 0; s) = \delta(\xi + s - L) \exp(-\alpha \xi),
\]

\[
\phi(0, t; s) = \phi(L, t; s) = 0.
\]

(5)

which is a simple diffusion problem whose solution is well-known [2]:

\[
\phi(\xi, t; s) = \sum_{p=1}^{\infty} a_p \exp\left(-\frac{p^2 t}{\tau_d}\right) \sin\left(\frac{p\pi \xi}{L}\right),
\]

(6)

where \(\tau_d \) is the terminal time defined in the main text. Enforcing the initial condition, the coefficients \(a_p(0) \) are immediately obtained:

\[
a_p = \frac{2}{L} \int_0^L \delta(\xi + s - L) e^{-\alpha \xi} \sin\left(\frac{p\pi \xi}{L}\right) d\xi
\]

\[
= \frac{2}{L} e^{-\alpha(L-s)} \sin\left(\frac{p\pi(L-s)}{L}\right).
\]

(7)

* jorge.ramirez@upm.es
Substitution of the coefficients a_p into Eq. (6) yields

$$
\phi(\xi, t; s) = \frac{2}{L} e^{-\alpha(L-s)} \sum_{p=1}^{\infty} \exp\left(\frac{-p^2 t}{\tau_d}\right) \sin\left(\frac{p\pi(L-s)}{L}\right) \sin\left(\frac{p\pi \xi}{L}\right), \quad \text{(8)}
$$

Substituting back $\phi(\xi, t, a)$ into Eq. (2) and reverting the first change of variables, it is easy to show that the solution to the original problem (1) yields

$$
\Psi(\xi, t; s) = \frac{2}{L} \exp\left(\frac{c\xi}{2D_c}\right) \exp\left(\frac{-c^2 t}{4D_c}\right) \sum_{p=1}^{\infty} \exp\left(\frac{-p^2 t}{\tau_d}\right) \sin\left(\frac{p\pi s}{L}\right) \sin\left(\frac{p\pi (s - \xi)}{L}\right). \quad \text{(9)}
$$

II. ANALYTICAL SOLUTION FOR THE MEAN SQUARE DISPLACEMENT.

We shall first derive a stochastic equation for reptation with drift. Let $\Delta \xi(t)$ be the distance that the primitive chain moves in a time interval Δt. We can express $R(s, t + \Delta t) = R(s + \Delta \xi(t), t)$ that relates the position of the tube segment s at time $t + \Delta t$ to the position of the segment $s + \Delta \xi(t)$ at a previous time t. The distance $\Delta \xi(t)$ is a random Gaussian variable with mean and variance given by $\langle \Delta \xi(t) \rangle = c\Delta t$, $\langle (\Delta \xi(t))^2 \rangle = 2D_c\Delta t$. This distribution differs with pure reptation where the average of $\Delta \xi(t)$ is 0. To compute the MSD we use the stochastic equation and the definition $g_1(s, t) = \phi(s, s; t) = \langle (R(s, t) - R(s, 0))^2 \rangle$. It is easier to compute the more general correlation function $\phi(s, s'; t) = \langle (R(s, t) - R(s', 0))^2 \rangle$.

Expanding stochastic equation we get the partial differential equation

$$
\frac{\partial \phi(s, s'; t)}{\partial t} - c \frac{\partial \phi(s, s'; t)}{\partial s} = D_c \frac{\partial^2 \phi(s, s'; t)}{\partial s^2}. \quad \text{(10)}
$$

The boundary and initial conditions are preserved from the pure reptation problem:

$$
\phi(s, s'; 0) = a|s - s'|, \quad \left\{ \begin{array}{l}
\left. \frac{\partial \phi(s, s'; t)}{\partial s} \right|_{s=L} = a \\
\left. \frac{\partial \phi(s, s'; t)}{\partial s} \right|_{s=0} = -a.
\end{array} \right. \text{(11)}
$$

In order to turn the boundary conditions homogeneous, we start splitting $\phi(s, s'; t)$ into two different functions:

$$
\phi(s, s'; t) = \psi(s, s'; t) + \rho(s, s'), \quad \text{(12)}
$$

where $\rho(s, s') = a|s - s'|$. Substituting (12) into the original problem, the equation to solve for $\psi(s, s'; t)$ is written as

$$
\frac{\partial \psi}{\partial t} - c \frac{\partial \psi}{\partial s} - D_c \frac{\partial^2 \psi}{\partial s^2} = F(s, s'), \quad \text{(13)}
$$
with homogeneous both initial and boundary conditions, i.e.

\[
\psi(s, s'; t) \bigg|_{t=0} = 0, \quad \frac{\partial \psi}{\partial s} \bigg|_{s=0} = \frac{\partial \psi}{\partial s} \bigg|_{s=L} = 0,
\]

(14)

and where

\[
F(s, s') = ac[\Theta(s - s') - 1] + 2aD_c \delta(s - s'),
\]

(15)

being \(\Theta(s - s')\) the Heaviside function and \(\delta(s - s')\) the Dirac delta. Note that the non-homogeneous term \(F(s, s')\) arises from the substitution of \(\rho(s, s')\) in Eq. (10). The function \(\psi(s, s'; t)\) can be factorized as follows

\[
\psi(s, s'; t) = f(s) \cdot T(s', t).
\]

(16)

For the homogeneous problem, the segmental equation for \(f(s)\) can be expressed as

\[
\frac{\partial^2 f}{\partial s^2} + 2d \frac{\partial f}{\partial s} + \lambda_p^2 f = 0,
\]

(17)

where \(\lambda_p\) are the eigenvalues and

\[
d = \frac{c}{2D_c}.
\]

(18)

The boundary conditions for \(f(s)\) are given in Eq. (14). The solution to this problem with the homogeneous boundary conditions is the following [3]:

\[
f_p(s) = e^{-ds} \left[\cos \left(\frac{p \pi s}{L} \right) + \frac{dL}{p \pi} \sin \left(\frac{p \pi s}{L} \right) \right] \quad \text{if} \quad p \in \mathbb{N}
\]

\[
f_0(s) = 1 \quad \text{if} \quad \lambda_0^2 = 0.
\]

(19)

Note that the eigenvalues in the first case take the form

\[
\lambda_p^2 = d^2 + \left(\frac{p \pi}{L} \right)^2.
\]

(20)

We shall now expand \(F(s, s')\) in the basis of the eigenfunctions (19):

\[
2aD_c \delta(s - s') = \sum_{p=0}^{\infty} B_p(s') f_p(s),
\]

\[
ac[2\Theta(s - s') - 1] = \sum_{p=0}^{\infty} C_p(s') f_p(s).
\]

(21)
The coefficient of the series can be computed by multiplying the sum by \(\exp(2ds) f_q(s)\) for \(p > 0\) and by \(\exp(2ds)\) for \(p = 0\) and integrating between 0 and \(L\):

\[
\begin{align*}
B_0(s') &= 4aD_c \frac{\exp(2ds')}{\exp(2dL) - 1} \\
B_p(s') &= \frac{4aD_p^2\pi^2\exp(2ds')}{L(L^2d^2 + p^2\pi^2)} f_p(s') \quad p \in \mathbb{N}, \\
C_0(s') &= \frac{2\exp(2ds') - \exp(2dL) - 1}{1 - \exp(2dL)} \\
C_p(s') &= \frac{\exp(ds') \sin \left(\frac{p\pi s'}{L}\right)}{p^2\pi^2 + L^2d^2} \quad p \in \mathbb{N}.
\end{align*}
\]

(22)

Efforts must now be focused on solving the temporal equation which is written as

\[
\frac{\partial T}{\partial t} + D_c \lambda_p^2 T = F_p(s, s'),
\]

(23)

where \(F_p(s, s')\) corresponds to the expansion in terms of the spatial eigenfunctions as described above. For the zero mode Eq. (23) is simplified to

\[
\frac{\partial T}{\partial t} = B_0(s') + C_0(s'),
\]

(24)

which can be straightforwardly integrated to give in a simplified form

\[
T_0(t) = ac \coth(dL)t = \psi_0(s, s'; t).
\]

(25)

The latter relation is valid since \(f_0(s) = 1\). Equivalently proceeding for the \(p > 0\) modes, the temporal equation (23) with the eigenvalues (20) yields

\[
T_p(t) = D_p(0) \exp(-D_c \lambda_p^2 t) + \frac{F_p(s, s')}{\lambda_p^2}.
\]

(26)

The first term corresponds to the solution for the homogeneous equation with \(D_p(0)\) to be estimated by enforcing the initial condition (14), so that

\[
D_p(0) = -\frac{F_p(s, s')}{\lambda_p^2},
\]

(27)

and hence, substituting the full expansion of \(F_p(s, s')\) of the positive modes we get

\[
\psi_p(s, s'; t) = e^{d(s'-s)} \sum_{p=1}^{\infty} \left(1 - e^{-D_c \lambda_p^2 t}\right) \frac{4aLp^2\pi^2}{(p^2\pi^2 + L^2d^2)^2} \\
\times \left[\cos \left(\frac{p\pi s'}{L}\right) - \frac{dL}{p\pi} \sin \left(\frac{p\pi s'}{L}\right) \right] \left[\cos \left(\frac{p\pi s}{L}\right) + \frac{dL}{p\pi} \sin \left(\frac{p\pi s}{L}\right) \right].
\]

(28)
Finally, putting together both eigenfunctions (Eqs. (25), (28)) and adding the function \(\rho(s, s') \), we get the full solution for the segmental motion:

\[
\phi(s, s'; t) = a|s - s'| + \text{act} \coth \left(\frac{cL}{2D_c} \right) + e^{\left(\frac{c(s' - s)}{2D_c} \right)} \sum_{p=1}^{\infty} \left(1 - e^{-D_c \lambda_p^2 t} \right) \frac{64aD_c^4 L p^2 \pi^2}{(4D^2 p^2 \pi^2 + L^2 c^2)²} \\
\times \left[\cos \left(\frac{p\pi s'}{L} \right) - \frac{cL}{2D_c p \pi} \sin \left(\frac{p\pi s'}{L} \right) \right] \left[\cos \left(\frac{p\pi s}{L} \right) + \frac{cL}{2D_c p \pi} \sin \left(\frac{p\pi s}{L} \right) \right].
\]

(29)

