Injectable Silk-Vaterite Composite Hydrogels with Tunable Sustained Drug Release Capacity

Caihong Zhu¹,²,#, Zhaozhao Ding²,#, Qiang Lu²,* , Guozhong Lu³, Liying Xiao², Xiaoyi Zhang²,
Xiaodan Dong², Changhai Ru¹,* , David L Kapland

¹Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 178 Ganjiang East Road, Suzhou 215021, People’s Republic of China

²National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People’s Republic of China

³Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, 585 Xingyuan North Road, Wuxi 214041, People’s Republic of China

⁴Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States

#The authors have the same contribution to the work.

Corresponding author:
*Changhai Ru, Email: rzh@suda.edu.cn
*Qiang Lu, E-mail: lvqiang78@suda.edu.cn
Figure S1. Morphology of silk nanofibers.

Table S1. The Abbreviation of vaterite microspheres.

<table>
<thead>
<tr>
<th>Temperature Treated</th>
<th>Untreated</th>
<th>305°C/2h</th>
<th>310°C/6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>V_0</td>
<td>V_{305-2}</td>
<td>V_{310-6}</td>
</tr>
</tbody>
</table>

V_0 represents original vaterite microspheres; V_{305-2} represents the vaterite spheres treated at 305°C for 2h; V_{310-6} represents the vaterite spheres treated at 310°C for 6h.

Table S2. Entrapment efficiency of DOX on the different vaterite microspheres.

<table>
<thead>
<tr>
<th>CaCO$_3$</th>
<th>V_0</th>
<th>V_{305-2}</th>
<th>V_{310-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>entrapment efficiency (%)</td>
<td>96.3±0.2</td>
<td>96±0.15</td>
<td>96.4±0.13</td>
</tr>
</tbody>
</table>

V_0 represents original vaterite microspheres; V_{305-2} represents the vaterite spheres treated at 305°C for 2h; V_{310-6} represents the vaterite spheres treated at 310°C for 6h.
Figure S1. Morphology of silk nanofibers. (a) SEM and (b) AFM.