Supporting Information:

VO₂(p)-V₂C(MXene) Grid Structure as a Lithium Polysulfide Catalytic Host for High-performance Li-S Battery

Zhenguo Wang\(^a\), Ke Yu\(^{a,b}\), Yu Feng\(^a\), Ruijuan Qi\(^a\), Jie Ren\(^a\) and Ziqiang Zhu\(^a\)

\(^a\) Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China

\(^b\) Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

Corresponding Author

* Tel.: +86 21 54345198; Fax: +86 21 54345119. E-mail address: yk5188@263.net
Fig. S1 (a and b) The multilayer V$_2$C treated with TMAOH for 6 h.
Fig. S2 The pure VO$_2$(p) nanorod clusters hydrothermally grown and annealed at 120°C.
Fig. S3 Schematic diagram of crystal structure along different VO$_2$(p) crystal orientations. (a) The primitive unit cell of VO$_2$(p). (b) The extended unit cell of VO$_2$(p). (c) The (111) orientation of VO$_2$(p). (d) The (001) orientation of VO$_2$(p).
Fig. S4 Schematic diagram of crystal structure along different crystal orientations.
(a) The primitive unit cell of V_2AlC. (b) The extended unit cell of V_2AlC. (c) The (001) orientation of V_2CO_2. (d) The (110) orientation of V_2CO_2.
Fig. S5 (a) N$_2$ adsorption-desorption of V$_2$C nanosheets. (b) Pore diameter analysis of VO$_2$.
Fig. S6 The XPS full spectrum of VO$_2$(p)-V$_3$C.
Fig. S7 discharge/charge voltage curves of rate performance for (a) VO$_2$(p)-V$_2$C/S and (b) V$_2$C/S cathode.
Fig. S8 (a)-(d) FESEM images of VO$_2$(p)-V$_2$C/S cathodes after 500 cycles with different magnifications, showing the high structural integrity of VO$_2$(p)-V$_2$C host.
Fig. S9 (a-d) Film formation performance and flexible features of the as-synthesized VO$_2$(p)-V$_2$C host.
Fig. S10 (a) and (b) the photograph of soft package Li-S lighting a 2.4-inch LCD screen driven by a single chip microcomputer for more than 30 h.
Fig. S11 The three-electrode split cell system used in electrochemical measurement.
Fig. S12 cyclic voltammetry curves of (a) V₂C/S and (b) VO₂(p)-V₂C/S cathodes at the scan rate of 0.1 mV·s⁻¹.
Fig. S13 sealed vials of different LiPSs solutions, V$_2$C-LiPSs solutions and VO$_2$(p)-V$_2$C-LiPSs solutions for 30 min and 8 h.
Fig. S14 photographs showing separators of cells with (a) V$_2$C/S and (b) VO$_2$(p) -V$_2$C/S cathodes disassembled after 200 cycles at a current density of 2 C.
Fig. S15 Electrochemical impedance spectra of the symmetric cells.
Fig. S16 (a) The interfaces of VO$_2$(p)-V$_2$C bilayer structural model. (b) The charge density difference graph of (110) VO$_2$(p)-V$_2$C. The green and yellow regions represent the space charge accumulation and charge depletion region, respectively.
Fig. S17 The most favorable adsorption configuration of S_8, Li_2S, Li_2S_2, Li_2S_4, Li_3S_6 and Li_2S_8 on monolayer V_2CO_2. Optimized structure of potential adsorption configurations were showing in (a) to (f).
Fig. S18 The most favorable adsorption configuration of S_8, Li$_2$S, Li$_2$S$_2$, Li$_2$S$_4$, Li$_2$S$_6$ and Li$_2$S$_8$ on VO$_2$(p)-V$_2$CO$_2$. Optimized structure of potential adsorption configurations were showing in (a) to (f).
Table S1 The comparison of sulfur loading capacity and area capacity performance of cathode materials for vanadium-based two-dimensional lithium-sulfur batteries.

<table>
<thead>
<tr>
<th>Cathode materials</th>
<th>S loading (mg cm(^{-2}))</th>
<th>Current density (C)</th>
<th>Cycles</th>
<th>Initial capacity (mAh g(^{-1}))</th>
<th>Areal capacity (mAh cm(^{-2}))</th>
<th>Capacity decay (% per cycle)</th>
<th>Year</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO(_2)(p)-V(_2)C</td>
<td>10.2</td>
<td>0.2</td>
<td>200</td>
<td>1025</td>
<td>9.3</td>
<td>0.15</td>
<td>-</td>
<td>This work</td>
</tr>
<tr>
<td>VO(_2)(B)-rGO</td>
<td>1.6</td>
<td>0.2</td>
<td>100</td>
<td>1405</td>
<td>2.25</td>
<td>0.3</td>
<td>2018</td>
<td>1</td>
</tr>
<tr>
<td>VO(_2)(B)-VN</td>
<td>4.2</td>
<td>0.3</td>
<td>50</td>
<td>1125</td>
<td>4.7</td>
<td>0.44</td>
<td>2018</td>
<td>2</td>
</tr>
<tr>
<td>VO(_2)(B)-graphene</td>
<td>1.2-1.5</td>
<td>0.5</td>
<td>1000</td>
<td>~950</td>
<td>1.14-1.4</td>
<td>0.058</td>
<td>2015</td>
<td>3</td>
</tr>
<tr>
<td>VO(_2)(B)-graphene</td>
<td>1.2-1.5</td>
<td>0.2</td>
<td>300</td>
<td>~1000</td>
<td>1.2-1.5</td>
<td>0.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO(_2)(B)-graphene</td>
<td>1.2-1.5</td>
<td>0.2</td>
<td>300</td>
<td>~1000</td>
<td>1.2-1.5</td>
<td>0.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO(_2)(B)-graphene</td>
<td>1.2-1.5</td>
<td>0.2</td>
<td>300</td>
<td>~1000</td>
<td>1.2-1.5</td>
<td>0.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO(_2)(B)-graphene</td>
<td>1.2-1.5</td>
<td>0.2</td>
<td>300</td>
<td>~1000</td>
<td>1.2-1.5</td>
<td>0.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti(_3)C(_2)-C</td>
<td>2.0</td>
<td>0.1</td>
<td>300</td>
<td>1225.8</td>
<td>1.8</td>
<td>0.11</td>
<td>2016</td>
<td>5</td>
</tr>
<tr>
<td>VN-C</td>
<td>2.8</td>
<td>1</td>
<td>200</td>
<td>1200</td>
<td>2.8</td>
<td>0.24</td>
<td>2017</td>
<td>6</td>
</tr>
<tr>
<td>VS(_2)-graphene</td>
<td>3.5</td>
<td>1</td>
<td>150</td>
<td>1504</td>
<td>1.9</td>
<td>0.23</td>
<td>2018</td>
<td>7</td>
</tr>
<tr>
<td>VS(_2)-graphene</td>
<td>5.1</td>
<td>0.2</td>
<td>300</td>
<td>1015</td>
<td>-</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference

