Supporting Information

Pantheric acids A-C from a Poisonous Mushroom, *Amanita pantherina* Promotes Lipid Accumulation in Adipocytes

Seoung Rak Lee,† Sang Ah Yi,† Ki Hong Nam,‡ Rhim Ryoo,‡ Jaecheol Lee,† and Ki Hyun Kim†,*

†School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
‡Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
Supporting Information Contents:

Figure S1. The HR-ESIMS data of 1 ... 3
Figure S2. The 1H NMR spectrum of 1 (CD$_3$OD, 800 MHz) ... 4
Figure S3. The 1H-1H COSY spectrum of 1 ... 5
Figure S4. The HSQC spectrum of 1 ... 6
Figure S5. The HMBC spectrum of 1 ... 7
Figure S6. The UV spectrum of 1 ... 8
Figure S7. The HR-ESIMS data of 2 ... 9
Figure S8. The 1H NMR spectrum of 2 (CD$_3$OD, 800 MHz) ... 10
Figure S9. The 1H-1H COSY spectrum of 2 ... 11
Figure S10. The HSQC spectrum of 2 ... 12
Figure S11. The HMBC spectrum of 2 ... 13
Figure S12. The UV spectrum of 2 ... 14
Figure S13. The HR-ESIMS data of 3 ... 15
Figure S14. The 1H NMR spectrum of 3 (CD$_3$OD, 800 MHz) ... 16
Figure S15. The 1H-1H COSY spectrum of 3 ... 17
Figure S16. The HSQC spectrum of 3 ... 18
Figure S17. The HMBC spectrum of 3 ... 19
Figure S18. The UV spectrum of 3 ... 20
Figure S19. The HR-MS/MS data of 2 ... 21
Figure S20. The LC/MS data of acylated derivatives from CEA reaction of 1 ([M + Na]$^+$ peak at m/z 431) ... 22-23
Figure S21. The LC/MS data of acylated derivatives from CEA reaction of 2 ([M + Na]$^+$ peak at m/z 457) ... 24-25
Figure S1. The HR-ESIMS data of 1
Figure S2. The 1H NMR spectrum of 1 (CD$_3$OD, 800 MHz)
Figure S3. The 1H-1H COSY spectrum of 1
Figure S4. The HSQC spectrum of 1
Figure S5. The HMBC spectrum of 1
Figure S6. The UV spectrum of 1
Figure S7. The HR-ESIMS data of 2
Figure S8. The 1H NMR spectrum of 2 (CD$_3$OD, 800 MHz)
Figure S9. The 1H-1H COSY spectrum of 2
Figure S10. The HSQC spectrum of 2
Figure S11. The HMBC spectrum of 2
Figure S12. The UV spectrum of 2
Figure S13. The HR-ESIMS data of 3

Single mass analysis
- Tolerance = 20.0 mDa
- DRR min = 1.5, max = 80.0
- Element prediction: Off
- Number of isotopes printed: 10

Isotopes Printed:
- Mass: [213.1279, 214.1279, 215.1279, ...]
- Calcd Mass: [213.1279, 214.1279, 215.1279, ...]
- ppm: [0.1, 0.1, 0.1, ...]
- DB: [0.1, 0.1, 0.1, ...]
- Formula: [C84H83N6O22, C84H83N6O22, C84H83N6O22, ...]
- I-RT: [84.8, 84.8, 84.8, ...]
- H-RT: [84.8, 84.8, 84.8, ...]
- H-RT Error: [0.00, 0.00, 0.00, ...]
- H-RT Form: [84.8, 84.8, 84.8, ...]
- H-Conf %: [0.00, 0.00, 0.00, ...]
- C: [29, 29, 29, ...]
- H: [4, 4, 4, ...]
- N: [2, 2, 2, ...]
- O: [2, 2, 2, ...]

Elements Used:
- [C84H83N6O22, C84H83N6O22, C84H83N6O22, ...]

Diagram:
- Mass spectrum graph showing peaks at various masses with corresponding intensities.

Additional Information:
- Mass range: [213, 215]
- Calculated masses and theoretical masses compared.
- Isotopic patterns analyzed for each mass.
Figure S14. The 1H NMR spectrum of 3 (CD$_3$OD, 800 MHz)
Figure S15. The 1H-1H COSY spectrum of 3
Figure S16. The HSQC spectrum of 3
Figure S17. The HMBC spectrum of 3
Figure S18. The UV spectrum of 3
Figure S19. The HR-MS/MS data of 2
Figure S20. The LC/MS data of acylated derivatives from CEA reaction of 1 ([M + Na]+ peak at m/z 431): (a) A fully acylated derivative of compound 1 in R-HBTM at 30 min; (b) A fully acylated derivative of compound 1 in S-HBTM at 30 min

a) R-HBTM (30 min)
b) S-HBTM (30 min)
Figure S21. The LC/MS data of acylated derivatives from CEA reaction of 2 ([M + Na]+ peak at m/z 457): (a) A fully acylated derivative of compound 2 in *R*-HBTM at 30 min; (b) A fully acylated derivative of compound 2 in *S*-HBTM at 30 min

a) *R*-HBTM (30 min)
b) S-HBTM (30 min)