Supporting Information

Antifungal Macro cyclic Trichothecenes from the Insect- Associated Fungus *Myrothecium roridum*

Tian-Xiao Li,† Ya-Mei Xiong,† Xin Chen,† Ya-Nan Yang,† Ying Wang,† Xue-Wei Jia,† Xue-Peng Yang,† Lan-Lan Tan,*‡ and Chun-Ping Xu*†

†College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
‡Technical Center of China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610051, China

Corresponding authors.

*Tel/Fax: +86 371 86609637. E-mail: c.p.xu@zzuli.edu.cn. (C.-P. Xu).

*Tel/Fax: +86 28 86605967. E-mail: lucya73@163.com. (L.-L. Tan).
Table of Contents

Table S1. Inhibition Zone Diameters (mm) of Compounds (200 μg/mL) against Plant Pathogenic Fungi

For compound 1

Figure S1. HRESIMS spectrum of roridoxin A (1) .. S2
Figure S2. ECD spectrum of roridoxin A (1) in MeOH ... S3
Figure S3. IR spectrum of roridoxin A (1) .. S3
Figure S4. 1H NMR spectrum (600 MHz, CDCl$_3$) of roridoxin A (1) S4
Figure S5. 13C NMR spectrum (150 MHz, CDCl$_3$) of roridoxin A (1) S4
Figure S6. 1H-1H COSY spectrum (CDCl$_3$) of roridoxin A (1) S5
Figure S7. HSQC spectrum (CDCl$_3$) of roridoxin A (1) S5
Figure S8. HMBC spectrum (CDCl$_3$) of roridoxin A (1) S6
Figure S9. ROESY spectrum (CDCl$_3$) of roridoxin A (1) S6

For compound 2

Figure S10. HRESIMS spectrum of roridoxin B (2) ... S7
Figure S11. ECD spectrum of roridoxin B (2) in MeOH .. S8
Figure S12. IR spectrum of roridoxin B (2) ... S8
Figure S13. 1H NMR spectrum (600 MHz, CDCl$_3$) of roridoxin B (2) S9
Figure S14. 13C NMR spectrum (150 MHz, CDCl$_3$) of roridoxin B (2) S9
Figure S15. 1H-1H COSY spectrum (CDCl$_3$) of roridoxin B (2) S10
Figure S16. HSQC spectrum (CDCl$_3$) of roridoxin B (2) S10
Figure S17. HMBC spectrum (CDCl$_3$) of roridoxin B (2) S11
Figure S18. ROESY spectrum (CDCl$_3$) of roridoxin B (2) S11

For compound 3

Figure S19. HRESIMS spectrum of roridoxin C (3) ... S12
Figure S20. ECD spectrum of roridoxin C (3) in MeOH S13
Figure S21. IR spectrum of roridoxin C (3)…………………………………………..S13
Figure S22. 1H NMR spectrum (600 MHz, CDCl$_3$) of roridoxin C (3)………………..S14
Figure S23. 13C NMR spectrum (150 MHz, CDCl$_3$) of roridoxin C (3)…………..S14
Figure S24. 1H-1H COSY spectrum (CDCl$_3$) of roridoxin C (3)……………………..S15
Figure S25. HSQC spectrum (CDCl$_3$) of roridoxin C (3)……………………………S15
Figure S26. HMBC spectrum (CDCl$_3$) of roridoxin C (3)……………………………S16
Figure S27. ROESY spectrum (CDCl$_3$) of roridoxin C (3) ……………………………..S16
<table>
<thead>
<tr>
<th>compound</th>
<th>A. niger</th>
<th>A. tenuissima</th>
<th>P. grisea</th>
<th>F. oxysporum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21 ± 0.8</td>
<td>22 ± 0.7</td>
<td>19 ± 0.7</td>
<td>21 ± 0.8</td>
</tr>
<tr>
<td>2</td>
<td>19 ± 0.5</td>
<td>20 ± 0.8</td>
<td>17 ± 0.6</td>
<td>15 ± 0.7</td>
</tr>
<tr>
<td>3</td>
<td>24 ± 0.9</td>
<td>17 ± 0.4</td>
<td>12 ± 0.5</td>
<td>19 ± 0.6</td>
</tr>
<tr>
<td>4</td>
<td>14 ± 0.3</td>
<td>12 ± 0.2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>21 ± 0.5</td>
<td>18 ± 0.6</td>
<td>13 ± 0.3</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>17 ± 0.6</td>
<td>12 ± 0.3</td>
<td>–</td>
<td>13 ± 0.2</td>
</tr>
<tr>
<td>miconazole nitrateb</td>
<td>27 ± 0.8</td>
<td>36 ± 1.0</td>
<td>24 ± 0.8</td>
<td>32 ± 0.9</td>
</tr>
</tbody>
</table>

a± SD values were calculated based on three individual experiments; the inactive compounds were not shown; –, inactive. bPositive control.
Figure S1. HRESIMS spectrum of roridoxin A (1)
Figure S2. ECD spectrum of roridoxin A (1) in MeOH

Figure S3. IR spectrum of roridoxin A (1)
Figure S4. 1H NMR spectrum (600 MHz, CDCl$_3$) of roridoxin A (1)

Figure S5. 13C NMR spectrum (150 MHz, CDCl$_3$) of roridoxin A (1)
Figure S6. 1H-1H COSY spectrum (CDCl$_3$) of roridoxin A (1)

Figure S7. HSQC spectrum (CDCl$_3$) of roridoxin A (1)
Figure S8. HMBC spectrum (CDCl$_3$) of roridoxin A (1)

Figure S9. ROESY spectrum (CDCl$_3$) of roridoxin A (1)
Figure S10. HRESIMS spectrum of roridoxin B (2)
Figure S11. ECD spectrum of roridoxin B (2) in MeOH

Figure S12. IR spectrum of roridoxin B (2)
Figure S13. 1H NMR spectrum (600 MHz, CDCl$_3$) of roridoxin B (2)

Figure S14. 13C NMR spectrum (150 MHz, CDCl$_3$) of roridoxin B (2)
Figure S15. 1H-1H COSY spectrum (CDCl$_3$) of roridoxin B (2)

Figure S16. HSQC spectrum (CDCl$_3$) of roridoxin B (2)
Figure S17. HMBC spectrum (CDCl$_3$) of roridoxin B (2)

Figure S18. ROESY spectrum (CDCl$_3$) of roridoxin B (2)
Figure S19. HREIMS spectrum of roridoxin C (3)
Figure S20. ECD spectrum of roridoxin C (3) in MeOH

Figure S21. IR spectrum of roridoxin C (3)
Figure S22. 1H NMR spectrum (600 MHz, CDCl$_3$) of roridoxin C (3)

Figure S23. 13C NMR spectrum (150 MHz, CDCl$_3$) of roridoxin C (3)
Figure S24. 1H-1H COSY spectrum (CDCl$_3$) of roridoxin C (3)

Figure S25. HSQC spectrum (CDCl$_3$) of roridoxin C (3)
Figure S26. HMBC spectrum (CDCl$_3$) of roridoxin C (3)

Figure S27. ROESY spectrum (CDCl$_3$) of roridoxin C (3)