Supporting Information

Degradable and Thermosensitive Microgels with Tannic Acid as Sole Cross-Linker

Jinqiao Xue, a** Weiming Ji, a** Shunni Dong, a Zhijun Zhang, a Jia Gao, a Pengjia Yang, a Jingjing Nie, b and Binyang Du *a

a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China

b Department of Chemistry, Zhejiang University, Hangzhou 310027, China

Number of pages: 13

Number of figures: 15

*Corresponding author. E-mail: duby@zju.edu.cn.

** Jinqiao Xue and Weiming Ji have equal contribution.
Table of contents:

Detail Synthesis Procedure of hydrophobic Fe$_3$O$_4$ nanoparticles.	S4
Figure S1. Representative TEM images of (A) PNIPAM-TA-1 microgels and (B) PNIPAM-TA-3 microgels and representative SEM images of (C) PNIPAM-TA-1 microgels and (D) PNIPAM-TA-3 microgels.	S5
Figure S2. Guinier-type plots of Ln $I(q)^{1/2} \sim q^2$ measured by SLS at 25 °C for PNIPAM-TA series of microgels.	S6
Figure S3. Hydrodynamic diameter and distribution of the large aggregates formed in the presence of the linear PNIPAM and TA in the aqueous solution at 25 °C.	S6
Figure S4. Representative TEM images of (A) PNIPAM-TA-1, (B) PNIPAM-TA-2, and (C) PNIPAM-TA-3 microgels re-dispersed in DMF.	S7
Figure S5. Representative TEM image of PNIPAM-L-TA microgels re-dispersed in DMF.	S7
Figure S6. (A) UV-vis absorption spectra of TA aqueous solutions with different concentrations and (B) the corresponding standard calibration curve of TA aqueous solutions at $\lambda_{\text{max}} = 276$ nm.	S8
Figure S7. Representative TEM images of PNIPAM-TA series of microgels with pH 11.4. (A) PNIPAM-TA-1, (B) PNIPAM-TA-2, and (C) PNIPAM-TA-3.	S8
Figure S8. (A) UV-vis spectra of PNIPAM-TA-1 microgel aqueous suspensions with various pH values. The inset is the corresponding photos of PNIPAM-TA-1 microgel aqueous suspensions. (B) Hydrodynamic diameters, D_h and scattering intensities, I of PNIPAM-TA-1 microgel aqueous suspensions with various pH values measured by DLS. (C) FT-IR spectra of free-dried PNIPAM-TA-1 microgel aqueous suspensions with pH 6.2, 11.4, 11.7 and 12.0. (D) Intensities of UV-vis absorption at 500 nm as a function of time for PNIPAM-TA-1 microgel aqueous suspensions (2.8 mg/mL) with various pH values measured immediately after pH adjustment.	S9
Figure S9. (A) UV-vis spectra of PNIPAM-TA-3 microgel aqueous suspensions with various pH values. The inset is the corresponding photos of PNIPAM-TA-3 microgel aqueous suspensions. (B) Hydrodynamic diameters, D_h and scattering intensities, I of PNIPAM-TA-3 microgel aqueous suspensions with various pH values measured by DLS. (C) FT-IR spectra of free-dried PNIPAM-TA-3 microgel aqueous suspensions with pH 6.2, 11.4, 11.7 and 12.0. (D) Intensities of UV-vis absorption at 500 nm as a function of time for PNIPAM-TA-3 microgel aqueous suspensions (2.8 mg/mL) with various pH values measured immediately after pH adjustment.	S10
absorption at 500 nm as a function of time for PNIPAM-TA-3 microgel aqueous suspensions (1.0 mg/mL) with various pH values measured immediately after pH adjustment.

Figure S10. Hydrodynamic diameter distributions of Fe₃O₄ nanoparticles dispersed in n-hexane (top panel) and Fe₃O₄@TA composite nanoparticles dispersed in water (low panel).

Figure S11. XRD pattern of freeze-dried Fe₃O₄@TA composite nanoparticles.

Figure S12. (A) UV-vis absorption spectrum of Fe₃O₄@TA composite nanoparticles dispersed in water with concentration of 0.2 mg/mL. (B) TG analysis curves of Fe₃O₄@TA composite nanoparticles and PNIPAM-Fe₃O₄@TA microgels.

Figure S13. Guinier-type plot of Ln I (q)⁻¹ ~ q² measured by SLS at 25 ºC for PNIPAM-Fe₃O₄@TA hybrid microgels. The solid line was linear fit.

Figure S14. Hydrodynamic diameters, Dₕₛ of PNIPAM-Fe₃O₄@TA hybrid microgels measured by DLS as a function of temperature in the heating process.

Figure S15. (A) UV-vis spectra of PNIPAM-Fe₃O₄@TA hybrid microgels aqueous suspensions with various pH values. (B) Representative TEM image of PNIPAM-Fe₃O₄@TA hybrid microgels with pH 11.4. (C) FT-IR spectra of free-dried PNIPAM-Fe₃O₄@TA hybrid microgels with various pH values..
Detail Synthesis Procedure of hydrophobic Fe$_3$O$_4$ nanoparticles. Briefly, 1.589 g (4.5 mmol) of ferric acetylacetonate, 5.815 g (22.5 mmol) of 1,2-dihydroxyhexadecane, 3.813 g (13.5 mmol) of oleic acid, 3.611 g (13.5 mmol) of oleylamine, and 75 mL of benzyl ether were separately added into a four necked round-bottom flask. The mixture was mechanically stirred with nitrogen bubbling for about half an hour. The solution temperature was then heated up to 200 °C by a heating jacket and maintained for 20 min. After that, the temperature was further raised to 300 °C and maintained for 30 min with reflux. Later, the heat source was removed and the reaction mixture was cooled down to room temperature in air. The obtained black liquid was then added into 150 mL of ethanol and the mixture was centrifuged at 6000 rpm for 10 min to give a black precipitant, which was re-dispersed in 40 mL of n-hexane and then centrifuged at 6000 rpm for 10 min to discard the insoluble part. The remaining black solution of n-hexane was added into 160 mL of ethanol and then centrifuged again at 6000 rpm for 10 min to give the Fe$_3$O$_4$ precipitant. The obtained purified Fe$_3$O$_4$ precipitant was re-dispersed in ethanol for further uses. The yield of hydrophobic Fe$_3$O$_4$ nanoparticles was about 23%.
Figure S1. Representative TEM images of (A) PNIPAM-TA-1 microgels and (B) PNIPAM-TA-3 microgels and representative SEM images of (C) PNIPAM-TA-1 microgels and (D) PNIPAM-TA-3 microgels.
Figure S2. Guinier-type plots of $\ln I(q)^{-1} \sim q^2$ measured by SLS at 25 °C for PNIPAM-TA series of microgels. The solid line was linear fit.

The SLS data was interpreted by Guinier-type plots of $\ln I(q)^{-1} \sim q^2$, where I is the scattering intensity and $q = \frac{4\pi n \lambda}{\lambda} \sin (\theta/2)$. $\langle R_g \rangle$ was determined from the slope of the plots according to the equation

$$\ln I(q)^{-1} = \ln I(0)^{-1} + \frac{\langle R_g \rangle^2}{3} q^2$$

(1)

Figure S3. Hydrodynamic diameter and distribution of the large aggregates formed in the presence of the linear PNIPAM and TA in the aqueous solution at 25 °C.
Figure S4. Representative TEM images of (A) PNIPAM-TA-1, (B) PNIPAM-TA-2, and (C) PNIPAM-TA-3 microgels re-dispersed in DMF.

Figure S5. Representative TEM image of PNIPAM-L-TA microgels re-dispersed in DMF.
Figure S6. (A) UV-vis absorption spectra of TA aqueous solutions with different concentrations and (B) the corresponding standard calibration curve of TA aqueous solutions at $\lambda_{\text{max}} = 276$ nm.

Figure S7. Representative TEM images of PNIPAM-TA series of microgels with pH 11.4. (A) PNIPAM-TA-1, (B) PNIPAM-TA-2, and (C) PNIPAM-TA-3.
Figure S8. (A) UV-vis spectra of PNIPAM-TA-1 microgel aqueous suspensions with various pH values. The inset is the corresponding photos of PNIPAM-TA-1 microgel aqueous suspensions. (B) Hydrodynamic diameters, D_h, and scattering intensities, I, of PNIPAM-TA-1 microgel aqueous suspensions with various pH values measured by DLS. (C) FT-IR spectra of free-dried PNIPAM-TA-1 microgel aqueous suspensions with pH 6.2, 11.4, 11.7 and 12.0. (D) Intensities of UV-vis absorption at 500 nm as a function of time for PNIPAM-TA-1 microgel aqueous suspensions (2.8 mg/mL) with various pH values measured immediately after pH adjustment.
Figure S9. (A) UV-vis spectra of PNIPAM-TA-3 microgel aqueous suspensions with various pH values. The inset is the corresponding photos of PNIPAM-TA-3 microgel aqueous suspensions. (B) Hydrodynamic diameters, D_h, and scattering intensities, I, of PNIPAM-TA-3 microgel aqueous suspensions with various pH values measured by DLS. (C) FT-IR spectra of free-dried PNIPAM-TA-3 microgel aqueous suspensions with pH 6.2, 11.4, 11.7 and 12.0. (D) Intensities of UV-vis absorption at 500 nm as a function of time for PNIPAM-TA-3 microgel aqueous suspensions (1.0 mg/mL) with various pH values measured immediately after pH adjustment.
Figure S10. Hydrodynamic diameter distributions of Fe$_3$O$_4$ nanoparticles dispersed in n-hexane (top panel) and Fe$_3$O$_4$@TA composite nanoparticles dispersed in water (low panel).

Figure S11. XRD pattern of freeze-dried Fe$_3$O$_4$@TA composite nanoparticles.
Figure S12. (A) UV-vis absorption spectrum of Fe$_3$O$_4$@TA composite nanoparticles dispersed in water with concentration of 0.2 mg/mL. (B) TG analysis curves of Fe$_3$O$_4$@TA composite nanoparticles and PNIPAM- Fe$_3$O$_4$@TA microgels.

Figure S13. Guinier-type plot of Ln $I (q)^{-1}$ $\sim q^2$ measured by SLS at 25 ºC for PNIPAM-Fe$_3$O$_4$@TA hybrid microgels. The solid line was linear fit.
Figure S14. Hydrodynamic diameters, D_hs of PNIPAM-Fe$_3$O$_4$@TA hybrid microgels measured by DLS as a function of temperature in the heating process.

Figure S15. (A) UV-vis spectra of PNIPAM-Fe$_3$O$_4$@TA hybrid microgels aqueous suspensions with various pH values. (B) Representative TEM image of PNIPAM-Fe$_3$O$_4$@TA hybrid microgels with pH 11.4. (C) FT-IR spectra of free-dried PNIPAM-Fe$_3$O$_4$@TA hybrid microgels with various pH values.