Supporting Information

Self-Driven Multicolor Electrochromic Energy Storage Windows Powered by a “Perpetual” Rechargeable Battery

Yanling Zhai,*a Ying Li,a Zhijun Zhu,*a Chengzhou Zhu,b Dan Du,c and Yuehe Lin*c

aCollege of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, PR China
E-mail: zhaiyanling@qdu.edu.cn, zhuzhijun@qdu.edu.cn
bCollege of Chemistry, Central China Normal University, Wuhan 430079 PR China
cSchool of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States. Email: yuehe.lin@wsu.edu
Figure S1. The absorbance spectra of PB under different potentials from -0.4 to 0.4 V.

Figure S2. Voltage level of discharging battery with Fe as anode and PB as cathode.
Figure S3. HRTEM image of zinc-blende CdSe nanocrystals with average diameter of 4.8 nm.

Figure S4. The i-t curve obtained during PB formation.

The Prussian blue film was electrodeposited on a single-sided conductive ITO glass (0.80× 5.50 cm²). The ITO was immersed in the electrochemical deposited solution containing FeCl₃ and K₃[Fe(CN)₆]. When employed 0.4 V potential, the ITO was changed from transparent to blue.
Figure S5. SEM image of PB film with 500 s electrodeposition.

Figure S6. TEM image of PB\textsubscript{NPs}.

Figure S7. The CV curve of PB NPs in 1 M KCl and 0.1 M phosphate buffer (pH 6) at scan rate of 10 mV/s.

Figure S8. (A) Spooled fluorescence spectra of ITO/PB/(CdSe_{556}/CdSe_{583}/CdSe_{618})/PBNP during the applied potential from -0.4 to 0.4 V, and (B) the variations of three characteristic peaks as a function of the applied potentials.