Supporting Information

Utilizing Copper-mediated deprotection of selenazolidine for cyclic peptides synthesis

Zhenguang Zhao and Norman Metanis

The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
E-mail: Metanis@mail.huji.ac.il

Table of contents

The synthesis of peptide thioesters.................................S1
MeONH₂ deprotects Sez and reacts with the thioester..............S5
Cu(II)-catalyzed deprotection of Sez in different buffer...........S6
The synthesis of cyclic peptides in one-pot by Cu(II)..............S7
The synthesis of WT-Kalata S and Se-Kalata S analogue...........S12
Supplementary figures...S15
References...S22
The synthesis of peptide thioesters

Analytical Data:
1) 1: Sez-LKFAG-MMP
90 mg crude 1 were obtained, and purified (30 mg, yield 15%). ESI-MS (m/z): obs. 800.17, calc. for [M + H]^+ 800.29.
2) **3a**: Sez-LKFAG-MPAA
80 mg crude 3a were obtained, and purified (35 mg, yield 16.5%). ESI-MS (m/z): obs.: 848.17, calc. for [M + H]^+ 848.29.

3) **3b**: Sez-LKFAT-MPAA
75 mg crude 3b were obtained, and purified (28 mg, yield 12.5%). ESI-MS (m/z): obs. 891.92, calc. for [M + H]^+ 892.32.
4) **3c**: Sez-LKFAA-MPAA
81 mg crude 3c were obtained, and purified (31 mg, yield 14.4%). ESI-MS (m/z): obs. 861.83, calc. for [M + H]^+ 862.31.

5) **3d**: Sez-LKFAF-MPAA
85 mg crude 3d were obtained, and purified (36 mg, yield 15.3%). ESI-MS (m/z): obs. 937.92, calc. for [M + H]^+ 938.34.
6) 3e: Sez-LKFAK-MPAA
65 mg crude 3e were obtained, and purified (20 mg, yield 8.7%). ESI-MS (m/z): obs. 919.00, calc. for [M + H]^+ 919.36.

7) 3f: Sez-LKFAV-MPAA
70 mg crude 3f were obtained, and purified (18 mg, yield 8.1%). ESI-MS (m/z): obs. 890.08, calc. for [M + H]^+ 890.34.
MeONH$_2$ deprotects Sez and reacts with the thioester to give 2

Scheme S1. Deprotection of Sez-LKFAG-MMP by MeONH$_2$

Figure S1. MeONH$_2$ deprotects Sez and reacts with the thioester to give 2.
Cu(II)-catalyzed deprotection of Sez in different buffer

Sez-LKFAG-OH (M1) was prepared by standard Fmoc-SPPS (Figure S10) as a model peptide for exploring the deprotection of Sez in different buffers with CuCl₂. Five different conditions was investigated: (I) 1.4 mg Sez-LKFAG-OH (M1, 2 μmol) was dissolved in 500 μL phosphate buffer (0.2 M sodium phosphate, 6 M Gdn·HCl, 1.5 equiv CuCl₂, pH 6) and shaken for 30 min at room temperature; (II) 1.4 mg Sez-LKFAG-OH (M1, 2 μmol) was dissolved in 500 μL phosphate buffer (0.2 M sodium phosphate, 1.5 equiv CuCl₂, pH 6) and shaken for 5 min at room temperature; (III) 1.4 mg Sez-LKFAG-OH (M1, 2 μmol) was dissolved in 500 μL phosphate buffer (0.2 M sodium phosphate, 0.3 equiv CuCl₂, pH 6) and shaken for 30 min at room temperature; (IV) 1.4 mg Sez-LKFAG-OH (M1, 2 μmol) was dissolved in 500 μL HEPES buffer (0.2 M sodium HEPES, 0.3 equiv CuCl₂, pH 6) and shaken for 30 min at room temperature; (V) 1.4 mg Sez-LKFAG-OH (M1, 2 μmol) was dissolved in 500 μL Tris buffer (0.2 M Tris hydrochloride, 0.3 equiv CuCl₂, pH 6) and shaken for 30 min at room temperature.

Figure S2. The deprotection of Sez in different buffers with CuCl₂
One-pot Cu(II)-mediated deprotection of Sez, cyclization and deselenization for the synthesis of cyclic peptides

We wanted to use our recently developed Cu(II)-mediated deprotection of Sez as a general strategy for cyclic peptide synthesis. Sez-LKFAG-MPAA (3a) and Sez-LKFAT-MPAA (3b) were used as two model peptides for optimization of cyclization conditions, as one bearing C-terminal Gly residue, with no steric hindrance and the other with more steric β-branched amino acid, Thr.¹
Figure S3. The synthesis of cyclic peptides c(ALKFAG), 6a, from Sez-LKFAG-MPAA (3a) and c(ALKFAT), 6b, from Sez-LKFAT-MPAA (3b) using different strategies. (a): the cyclization conditions of 3a was in the phosphate buffer (0.2 M NaH₂PO₄, 6 M Gn·HCl, pH 7) but with 0.05 M TCEP, 0.1 M sodium ascorbate, at room temperature. (b): the cyclization conditions of 3a was in the same phosphate buffer but with 5 equiv TCEP, 1 equiv MPAA, at pH 7, at room temperature. (c): the cyclization conditions of 3b was under the same conditions as in b. (d): the cyclization conditions of 3b was under the same conditions as in b but with additional 5 equiv MeONH₂ to quench the release formaldehyde.
The synthesis of different cyclic peptides

1) 6a c(ALKFAG), was prepared in 68% yield (0.8 mg). ESI-MS (m/z): obs. 588.17, calc. for [M + H]^+ 588.35.

2) 6b c(ALKFAT), was prepared in 47% yield (0.6 mg). ESI-MS (m/z): obs. 632.08, calc. for [M + H]^+ 632.38.
3) **6c** c(ALKFAA) was isolated in 67% yield (0.8 mg). ESI-MS (m/z): obs. 602.17, calc. for [M + H]^+ 602.37.

4) **6d** c(ALKFAF) was isolated in 59% yield (0.8 mg). ESI-MS (m/z): obs. 678.08, calc. for [M + H]^+ 678.40.
5) **6e** c(ALKFAK) was isolated in 39% yield (0.5 mg). ESI-MS (m/z): obs. 659.17, calc. for [M + H]^+ 659.42.

6) **6f** c(ALKFAV) was isolated in 55% yield (0.7 mg). ESI-MS (m/z): obs. 630.08, calc. for [M + H]^+ 630.40.
The synthesis of WT-Kalata S and Se-Kalata S analogue

The Kalata S and its seleno-analogue, Se-Kalata S, were prepared by making first the linear peptides followed by cyclization and oxidative folding.

WT-Kalata S
GLPVCGETCV GGTCPGCS CSWPVCTR

Se-Kalata S
GLPVCGETCV GGTCPGUS CSWPVCTR

The sequence of linear WT-Kalata S and Se-Kalata S (U = Sec)

WT-Kalata S
CSCSW PVCTR NGLPV CGETC VGGTC NTPG

Se-Kalata S
USCSW PVCTR NGLPV CGETC VGGTC NTPG

Figure S4. Analytical HPLC and ESI-MS of linear Kalata S-NHNH₂

Figure S5. Analytical HPLC and ESI-MS of cyclized reduced WT-Kalata S
Figure S6. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of oxidative folding of reduced WT-Kalata S

Figure S7. Analytical HPLC and ESI-MS of Sez-Kalata S-MPAA

Figure S8. Analytical HPLC and ESI-MS of reduced Se-Kalata S
Figure S9. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of oxidative folding of reduced Se-Kalata S
Supplementary Figures

Figure S10. Analytical HPLC (using XSelect C18 column (3.5 μm, 130 Å, 4.6 × 150 mm) at 220 nm) and ESI-MS of M1 (obs. 697.92, calc. for [M + H]^+ 698.28).

Figure S11. Analytical HPLC (using XSelect C18 column (3.5 μm, 130 Å, 4.6 × 150 mm) at 220 nm) and ESI-MS of M1' (obs. 1368.33, calc. for [M + H]^+ 1368.39).

Figure S12. Analytical HPLC(XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of Sec-LKFAG-MPAA dimer (obs. 1668.67, calc. for [M + H]^+ 1668.78).
Figure S13. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of c(ULKFAG) (obs. 668.00, calc. for [M + H]+ 668.27).

Figure S14. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of Sec-LKFAT-MPAA dimer (obs. 1756.50, calc. for [M + H]+ 1756.88).

Figure S15. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of c(ULKFAT) (obs. 711.92, calc. for [M + H]+ 711.74).
Figure S16. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of Sec-LKFAA-MPAA dimer (obs. 1696.58, calc. for [M + H]+ 1696.83).

Figure S17. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of c(ULKFAA) (obs. 681.92, calc. for [M + H]+ 681.72).

Figure S18. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of Sec-LKFAF-MPAA dimer (obs. 1846.58, calc. 1848.02).
Figure S19. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of c(ULKFAF) (obs. 758.00, calc. for [M + H]+ 757.81) and c(ULKFAF) + MPAA (obs. 925.83, calc. for [M + H]+ 924.32).

Figure S20. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of Sec-LKFAK-MPAA dimer (obs. 1809.89, calc. 1810.01).

Figure S21. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of c(ULKFAK) (obs. 738.92, calc. for [M + H]+ 738.81).
Figure S22. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of Sec-LKFAV-MPAA dimer (obs. 1752.75, calc. for [M + H]^+ 1752.94).

Figure S23. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of c(ULKFAV) (obs. 710.00, calc. for [M + H]^+ 710.31) and c(ULKFAV) + MPAA (obs. 877.83, calc. for [M + H]^+ 876.32).

Figure S24. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of pure WT-Kalata S-NHNH₂ (obs. 2914.54, calc. 2914.21).
Figure S25. Analytical HPLC (XSelect C18 column: 3.5 μm, 130 Å, 4.6 × 150 mm at 220 nm) and ESI-MS of Sez-Kalata S-NHNH₂ (obs. 2974.27, calc. 2974.16).

Figure S26. Circular Dichroism (CD) spectra in the far-UV for WT-Kalata S and Se-Kalata S (30 μM for each protein in buffer solution (50 mM NH₄HCO₃; 10 mM reduced GSH, pH 7.5 containing 50% iPrOH)) at 25 °C.
Figure S27. HR-MS analysis of WT-Kalata S. a. The simulated HR-MS of reduced form of WT-Kalata S with chemical formula C_{116}H_{177}N_{35}O_{39}S_{6} is shown; b. The deconvoluted HR-MS of WT-Kalata S. The observed (deconvoluted) and simulated isotopic patterns are identical (±3.2 ppm).
Figure S28. HR-MS analysis of Se-Kalata S. a. The simulated HR-MS of reduced form of Se-Kalata S with chemical formula $\text{C}_{116}\text{H}_{177}\text{N}_{35}\text{O}_{39}\text{S}_5\text{Se-}\text{Na}$ is shown; b. The deconvoluted HR-MS of Se-Kalata S. The observed (deconvoluted) and simulated isotopic patterns are identical (± 6.2 ppm).

References