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General Methods

[{1r(ppy)2ClY2]t [{Ir(dfppy)2Cl}2],% pytz® 1a* and 2a° were prepared according to previously reported procedures.
Caution: care should be taken in the preparation of triazole-containing compounds utilising organic azide starting
materials as these precursors are potentially explosive. Minimal C atom to N atom ratios of at least 2.5:1 to 3:1 are
recommended to mitigate this risk if the organic azide is to be isolated prior to use rather than prepared and used in situ.
All reagents were purchased from Acros Organics, Alfa Aesar, Sigma-Aldrich and Fluorochem and used as received.
Synthetic manipulations requiring an inert atmosphere were performed under dry N using standard Schlenk line
techniques. Deaeration of solvents was performed through vigorous bubbling with N, for a period of at least 15
minutes. NMR spectra were recorded on Bruker Ascend 400 MHz and 500 MHz spectrometers, with all chemical shifts
being reported in ppm, calibrated relative to the residual solvent signal (CHCIs, *H: § 7.26, 3C: § 77.16; MeCN, 'H: &
1.94, 13C: § 1.32, 118.26). High resolution mass spectrometry was performed on an Agilent 6210 TOF instrument with

a dual ESI source.

UV-Visible electronic absorption spectra were recorded on an Agilent Cary-60 spectrophotometer utilising quartz cells
of 1 cm pathlength. Emission spectra were recorded on a Fluoromax-4 spectrophotometer utilising 1 cm pathlength
quartz cells. ‘Degassed’ solutions were prepared via three repeat freeze-pump-thaw cycles. Photoluminescence quantum
yields are quoted relative to [Ru(bpy)s][PFs]2 in aerated MeCN, with all complexes being excited at a single wavelength
with common optical density. Quantum yields are thus determined from the ratio of integrated areas under the relevant
emission profiles, with an assumed experimental uncertainty of £10%. Luminescence lifetimes were determined using

an Edinburgh Instruments Mini-t equipped with a picosecond diode laser (404 nm, 56 ps) excitation source.

Cyclic voltammograms were measured using a PalmSens EmStat3 potentiostat with PSTrace electrochemical software
(version 4.8). Analyte solutions (typical concentration 1.65 mmoldm-3) were prepared using N, saturated MeCN, freshly
distilled from CaH.. All measurements were performed under an atmosphere of N, at scan rates ranging from 50 to 500
mVst. NBusPFs was employed as supporting electrolyte, being recrystallised from EtOH and oven dried prior to use,
with a typical solution concentration of 0.2 moldm-2. The working electrode was glassy carbon, the counter electrode Pt
wire and the reference Ag/AgCl, the latter being chemically isolated from the analyte solution by an electrolyte-
containing bridge tube tipped with a porous frit. Ferrocence was employed as an internal reference, with all potentials

being reported relative to the Fc*/Fc couple.
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Synthesis of 2-(trimethylsilylethynyl)pyrimidine

2-Bromopyrimidine (1.51 g, 9.50 mmol), Pd(PPhs).Cl, (0.34 g, 0.48 mmol, 5 mol%) and Cul (0.18 g, 0.95
mmol, 10 mol%) were added to previously deaerated 2:1 (v/v) dry THF/Et;N (60 ml). Ethynyltrimethylsilane
(3.4 ml, 24.5 mmol) was added and the dark brown coloured solution stirred at 50 °C for 17 h under Na.
After cooling to room temperature the reaction mixture was passed through a short silica pad. The filtrate
was concentrated under reduced pressure and then purified via column chromatography (SiO2, CHCly), with
the product being obtained initially as a yellow oil and then as a brown coloured solid after thorough drying
in vacuo. Yield = 1.39 g, 83 %. *H NMR (CDCls, 400 MHz): 0.29 (s, 9H), 7.23 (t, J = 4.9 Hz, 1H), 8.70 (d, J
= 4.9 Hz, 2H). *C NMR (CDCls, 101 MHz): -0.35, 94.63, 102.39, 120.17, 152.71, 157.37. HRMS (ES); m/z

calc. for CoH13N2Si: 177.0843, found: 177.0845 (MH").

Synthesis of 2-(1-benzyl-1,2,3-triazol-4-yl)pyrimidine (pymtz)

Benzyl azide (0.64 g, 4.80 mmol) and 2-(trimethylsilylethynyl)pyrimidine (0.76 g, 4.31 mmol) were added to
a mixed solvent system of THF (25 ml), H.0 (25 ml) and 'BuOH (5 ml). To this mixture were added, in
order, CuS04.5H,0 (0.28 g, 1.12 mmol), sodium ascorbate (0.43 g, 2.17 mmol), K.CO; (0.90 g, 6.50 mmol)
and excess pyridine (5 ml). The resulting reaction mixture was stirred at room temperature for 18 h before
removal of the organic solvents under reduced pressure. CHCI3 (90 ml) and conc. ag. NH3; (5 ml) were added
to the aqueous suspension, with the resulting biphasic mixture being stirred vigorously at room temperature
for a further 1 h. The organic layer was separated and the aqueous phase extracted with a further portion (50
mL) of CHCIs. The combined organic phases were washed successively with dilute agq. NH3 (3 x 100 ml),
H>O (100 ml) and brine (100 ml) before being dried over MgSO.. The volume of the solvent was reduced to
a minimum with the addition of excess hexane precipitating the pure product from solution as a beige-
coloured powder. Yield = 0.74 g, 72 %. 'H NMR (CDCls, 400 MHz): 5.59 (s, 2H), 7.18 (t, J = 4.9 Hz, 1H),
7.28-7.40 (m, 5H), 8.13 (s, 1H), 8.75 (d, J = 4.9 Hz, 2H). 3C NMR (CDCls, 101 MHz): 54.49, 119.74,
124.81, 128.38, 129.01, 129.30, 134.26, 147.68, 157.60, 159.15. HRMS (ES); m/z calc. for Ci3Hi2Ns:
238.1087, found: 238.1089 (MH*); m/z calc. for Ci3Hi1NsNa: 260.0907, found: 260.0910 (M+Na*); m/z

calc. for CasH22N1gNa: 497.1927, found: 497.1919 (2M+Na™).
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Synthesis of 2-(trimethylsilylethynyl)pyrazine

To previously deaerated 2:1 (v/v) dry THF/EtsN (60 ml) were added Pd(PPhs).Cl, (0.10 g, 0.14 mmol, 5
mol%), Cul (0.06 g, 0.31 mmol, 10 mol%), 2-iodopyrazine (0.30 ml, 3.04 mmol) followed by
ethynyltrimethylsilane (1.03 ml, 7.44 mmol). The reaction mixture was stirred at 50 °C for 19 h under N
then cooled to room temperature and passed through a short silica pad. The filtrate was concentrated under
reduced pressure then purified via column chromatography (SiO2, CH2Cl,), with the product obtained as a
yellow oil. Yield = 0.42 g, 79 %. *H NMR (CDCls, 400 MHz): 0.28 (s, 9H), 8.47 (d, J = 2.5 Hz, 1H), 8.51-
8.54 (m, 1H), 8.67 (d, J = 1.3 Hz, 1H). *C NMR (CDCls, 101 MHz): -0.40, 99.81, 100.67, 139.92, 143.09,

144.36, 147.92. HRMS (ES); m/z calc. for CoH13N,Si: 177.0843, found: 177.0843 (MH").

Synthesis of 2-(1-benzyl-1,2,3-triazol-4-yl)pyrazine (pyztz)

Benzyl azide (0.19 g, 1.42 mmol) and 2-(trimethylsilylethynyl)pyrazine (0.23 g, 1.30 mmol) were added to a
mixed solvent system of THF (25 ml), H,O (25 ml) and '‘BuOH (5 ml). To this mixture were added in order
CuS04.5H,0 (0.08 g, 0.32 mmol), sodium ascorbate (0.11 g, 0.55 mmol), K,CO3 (0.27 g, 1.96 mmol) and
excess pyridine (5 ml). The reaction mixture was stirred at room temperature for 22 h before removal of the
organic solvents under reduced pressure. CHCIs (90 ml) and conc. ag. NHs (5 ml) were added to the aqueous
suspension which was then stirred vigorously for a further hour at room temperature. The organic layer was
removed and the agueous phase extracted with a further portion (50 ml) of CHCls. The combined organic
phases were washed successively with dilute ag. NH3 (2 x 100 ml), H,O (100 ml) and brine (2 x 100 ml)
before being dried over MgSOa.. The solvent was evaporated to dryness with the residue subsequently
dissolved in the minimum volume of CH,Cl,. Addition of excess hexane precipitated the pure product from
solution as an off-white powder. Yield = 0.19 g, 63 %. *H NMR (CDCls, 400 MHz): 5.59 (s, 2H), 7.29-7.42
(m, 5H), 8.06 (s, 1H), 8.45-8.50 (m, 2H), 9.40 (d, J = 1.0 Hz, 1H). 3C NMR (CDCls, 101 MHz): 54.58,
122.99, 128.40, 129.10, 129.36, 134.20, 142.26, 143.74, 143.99, 145.98, 146.39. HRMS (ES); m/z calc. for
CisH12Ns: 238.1087, found: 238.1089 (MH™); m/z calc. for CisHiiNsNa: 260.0907, found: 260.0913

(M+Na*); m/z calc. for CosH22NioNa: 497.1927, found: 497.1919 (2M+Na").
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Synthesis of [Ir(ppy)(pymtz)][PFs] (1b)

2-(1-Benzyl-1,2,3-triazol-4-yl)pyrimidine (85 mg, 0.36 mmol), [{Ir(ppy)2Cl}.] (193 mg, 0.18 mmol) and
excess NH4PFg (217 mg, 1.33 mmol) were added to deaerated 1:1 (v/v) CHCI; / MeOH (35 ml) and heated to
60 °C under N for 16 h. The bright yellow coloured solution was allowed to cool to room temperature, with
excess Et,O then added to ensure complete precipitation of the product. The solids were collected by
filtration and washed with a small portion of H,O (10 ml) followed by Et,O. Purification was achieved via
column chromatography (SiOz, 9:1 CH,Cl, / MeCN) with additional recrystallisation from CH.Cl, / hexane
affording the product as a yellow solid. Yield = 167 mg, 53 %. *H NMR (CDsCN, 400 MHz): 5.61 (s, 2H),
6.21-6.28 (m, 2H), 6.82 (td, J = 1.3, 7.4 Hz, 1H), 6.88-6.97 (m, 2H), 7.01-7.13 (m, 3H), 7.19-7.25 (m, 2H),
7.33-7.42 (m, 4H), 7.70-7.80 (m, 4H), 7.87 (tt, J = 1.3, 7.9 Hz, 2H), 7.98 (dd, J = 2.2, 5.6 Hz, 1H), 8.02-8.07
(m, 2H), 8.74 (s, 1H), 8.93 (dd, J = 2.1 Hz, 4.9 Hz, 1H). 3C NMR (CDsCN, 101 MHz): 56.38, 120.56,
120.80, 123.27, 123.59, 123.82, 124.27, 124.65, 125.30, 125.76, 129.00, 129.43, 129.90, 130.01, 130.60,
131.25, 132.35, 132.60, 134.52, 139.54, 139.66, 145.13, 145.18, 146.45, 147.71, 148.59, 150.54, 150.85,
158.14, 160.43, 160.68, 167.86, 168.25. HRMS (ES); m/z calc. for CssHz7N-Ir: 738.1952, found: 738.1963

(M"). Anal. Calc’d for CasH27N7IrPFg (%): C 47.62, H 3.08, N 11.11, found (%): C 47.49, H 2.97, N 10.90.

Synthesis of [Ir(ppy)2(pyztz)][PFe] (1c)

2-(1-Benzyl-1,2,3-triazol-4-yl)pyrazine (89 mg, 0.38 mmol), [{Ir(ppy)-Cl}2] (203 mg, 0.19 mmol) and
excess NH4PFg (203 mg, 1.25 mmol) were added to deaerated 1:1 (v/v) CHCI; / MeOH (35 ml) and heated to
60 °C under N, for 16 h. After cooling of the red coloured solution to room temperature excess Et,O was
added to ensure complete precipitation of the product. The solids were collected by filtration and washed
with a small portion of H,O (10 ml) followed by Et,O. Purification was achieved via column
chromatography (SiO,, 4:1 CH,Cl, / MeCN) with additional recrystallisation form CH2Cl, / hexane affording
the product as a pale orange solid. Yield = 198 mg, 59%. *H NMR (CDsCN, 400 MHz): 5.60 (d, J = 15.0 Hz,
1H), 5.64 (d, J = 15.0 Hz, 1H), 6.22 (dd, J = 0.7, 7.7 Hz, 1H), 6.26 (dd, J = 0.7, 7.6 Hz, 1H), 6.84 (td, J =
1.3, 7.5 Hz, 1H), 6.90-7.00 (m, 2H), 7.00-7.12 (m, 3H), 7.23-7.29 (m, 2H), 7.37-7.45 (m, 3H), 7.63 (d, J =
5.8 Hz, 1H), 7.69-7.82 (m, 4H), 7.88 (t, J = 7.8 Hz, 2H), 8.03-8.08 (m, 2H), 8.53 (d, J = 3.0 Hz, 1H),
S7



8.69 (s, 1H), 9.30 (s, 1H). °C NMR (CD:CN, 101 MHz): 56.42, 120.61, 120.85, 123.38, 123.91, 124.29,
124.63, 125.32, 125.76, 127.48, 129.33, 130.04, 130.09, 130.65, 131.28, 132.34, 132.51, 134.23, 139.60,
139.72, 144.75, 145.03, 145.17, 145.64, 146.82, 147.24, 148.75, 148.78, 150.49, 150.84, 167.84, 168.13.

HRMS (ES); m/z calc. for CssHz7N7Ir: 738.1952, found: 738.1966 (M™).

Synthesis of [Ir(dfppy)2(pymtz)][PF¢] (2b)

2-(1-Benzyl-1,2,3-triazol-4-yl)pyrimidine (91 mg, 0.38 mmol), [{Ir(dfppy).Cl}.] (230 mg, 0.19 mmol) and
NH4PFs (151 mg, 0.93 mmol) were added to deaerated 1:1 (v/v) CHCIs / MeOH (30 ml) and heated to 45 °C
under N in the dark for 19 h. The orange coloured solution was cooled to room temperature then reduced in
volume, with the addition of excess hexane giving a precipitate which was collected by filtration and washed
with H2O (5 ml) followed by Et,O. Purification was achieved via column chromatography (SiO, 1% MeOH
/ CH2Cl) with additional recrystallisation from CHCl, / hexane giving the product as a very pale yellow
solid. Yield = 201 mg, 55 %. 'H NMR (CDsCN, 400 MHz): 5.63 (s, 2H), 5.68 (dd, J = 2.3, 8.7 Hz, 1H), 5.76
(dd, J = 2.3, 8.7 Hz, 1H), 6.61 (ddd, J = 2.3, 9.5, 13.0 Hz, 1H), 6.70 (ddd, J = 2.3, 9.5, 13.0 Hz, 1H), 7.10
(ddd, J = 1.2, 6.0, 7.5 Hz, 1H), 7.16 (ddd, J = 1.2, 6.0, 7.5 Hz, 1H), 7.19-7.26 (m , 2H), 7.32-7.39 (m, 3H),
7.43 (t, J = 5.5 Hz, 1H), 7.75-7.80 (m, 2H), 7.88-7.96 (m, 2H), 8.07 (dd, J = 2.1, 5.6 Hz, 1H), 8.24-8.34 (m,
2H), 8.76 (s, 1H), 8.97 (dd, J = 2.1, 4.9 Hz, 1H). *C NMR (CDsCN, 151 MHz): 56.65, 99.56 (t, J = 27.3
Hz), 100.08 (t, J = 27.3 Hz), 114.79 (dd, J = 2.8, 15.9 Hz), 114.90 (dd, J = 2.8, 15.9 Hz), 123.81, 124.35,
124.48, 124.64, 124.78, 125.15, 129.12 (m), 129.16, 129.23 (m), 129.66, 130.01, 130.06, 134.37, 140.61,
140.68, 147.58, 150.41 (d, J = 7.0 Hz), 151.00, 151.24, 152.59 (d, J = 6.4 Hz), 158.73, 160.40, 160.99,
161.67 (dd, J = 12.9, 260.6 Hz), 162.15 (dd, J = 12.5, 260.1 Hz), 163.70 (dd, J = 12.1, 255.7 Hz), 164.26 (d,
J =7.1Hz), 164.30 (dd, J = 12.4, 255.7 Hz), 164.5 (d, J = 7.1 Hz). HRMS (ES); m/z calc. for CasHzsN7F4lr:
810.1575, found: 810.1584 (M*). Anal. Calc’d for CssH23N7IrPF1 (%): C 44.03, H 2.43, N 10.27, found (%):

C 43.87,H 2.33, N 10.24.
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Synthesis of [Ir(dfppy)2(pyztz)][PFs] (2¢)

2-(1-Benzyl-1,2,3-triazol-4-yl)pyrazine (93 mg, 0.39 mmol), [{Ir(dfppy):Cl}.] (237 mg, 0.20 mmol) and
NH4PFs (153 mg, 0.94 mmol) were added to deaerated 1:1 (v/v) CHCIs / MeOH (20 ml) and heated to 45 °C
under N in the dark for 19 h. The yellow coloured suspension was allowed to cool to room temperature,
with excess hexane then added to ensure complete precipitation of the product. The solids were collected by
filtration, being washed with a small portion of H.O (5 ml) followed by Et,O. Purification was achieved via
column chromatography (SiOz, 2% MeOH / CH:Cl,) with additional recrystallisation from CHCl, / hexane
giving the product as a bright yellow powder. Yield = 216 mg, 58 %. *H NMR (CDsCN, 400 MHz): 5.61 (d,
J = 14.9 Hz, 1H), 5.65 (d, J = 15.0 Hz, 1H), 5.68 (dd, J = 2.2, 8.8 Hz, 1H), 5.76 (dd, J = 2.3, 8.6 Hz, 1H),
6.63 (ddd, J = 2.3, 9.7, 12.8 Hz, 1H), 6.72 (ddd, J = 2.3, 9.7, 12.9 Hz, 1H), 7.08 (ddd, J = 1.2, 5.8, 7.3 Hz,
1H), 7.15 (ddd, J = 1.1, 5.7, 7.3 Hz, 1H), 7.24-7.30 (m, 2H), 7.37-7.43 (m, 3H), 7.65 (d, J = 5.7 Hz, 1H),
7.73 (d, J = 5.5 Hz, 1H), 7.84-7.88 (m, 1H), 7.90-7.97 (m, 2H), 8.30 (t, J = 8.5 Hz, 2H), 8.58 (d, J = 2.9 Hz,
1H), 8.70 (s, 1H), 9.33 (d, J = 1.1 Hz, 1H). *C NMR (CDsCN, 151 MHz): 56.66, 99.62 (t, J = 27.1 Hz),
100.15 (t, J = 27.0 Hz), 114.71 (dd, J = 2.8, 18.3 Hz), 114.87 (dd, J = 2.8, 18.2 Hz), 124.36, 124.49, 124.65,
124,78, 125.11, 127.77, 129.09 (dd, J = 2.8, 5.0 Hz), 129.16 (J = 2.8, 5.0 Hz), 129.45, 130.12, 134.08,
140.63, 140.72, 145.14, 145.22, 145.43, 147.16, 149.12, 150.72 (d, J = 6.9 Hz), 150.94, 151.21, 152.74 (d, J
= 6.9 Hz), 161.67 (dd, J = 12.8, 260.0 Hz), 162.13 (dd, J = 12.8, 260.0 Hz), 163.69 (dd, J = 12.4, 255.2 Hz),
164.23 (d, J = 6.6 Hz), 164.30 (dd, J = 12.4, 255.9 Hz), 164.39 (d, J = 6.9 Hz). HRMS (ES); m/z calc. for
CasHasN7F4lr: 810.1575, found: 810.1566 (M™). Anal. Calc’d for CssHasN7IrPFyo (%): C 44.03, H 2.43, N

10.27, found (%): C 44.14, H 2.35, N 10.26.

Synthesis of [{Ir(ptz).Cl}.]

A 3:1 (v/v) mixture of 2-ethoxyethanol / H,O (26 ml) was heated to 50 °C and vigorously sparged with N2
for a period of 15 minutes, after which 2-(1-Benzyl-1,2,3-triazol-4-yl)benzene® (488 mg, 2.07 mmol) and
IrCls. xH20 (380 mg, 1.05 mmol based on 53 wt% Ir) were added. The reaction mixture was heated to 125

°C under N2 for 21 hours and then cooled to room temperature. The bright yellow precipitated solids were
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collected by filtration, washed with HO followed by Et,O and dried in vacuo. The product (yield = 698 mg,

96 %) was used in subsequent synthetic steps without further purification or characterisation.

Synthesis of [Ir(ptz)2(pytz)][PFs] (3a)

2-(1-Benzyl-1,2,3-triazol-4-yl)pyridine (52 mg, 0.22 mmol), [{Ir(ptz).Cl}.] (149 mg, 0.11 mmol) and excess
NH4PFs (108 mg, 0.66 mmol) were added to deaearted 1:1 (v/v) CHCI3 / MeOH (25 ml) and stirred under N
at 50 °C in the dark for 16 hours. The solution was allowed to cool to room temperature then hexane added to
afford an off-white coloured precipitate. The solids were collected by filtration, being washed with H.O (10
ml) followed by Et,O. Purification was achieved via column chromatography (SiO;, 9:1 CH.Cl, / MeCN),
with further recrystallisation from CHClI; / hexane giving the title complex as a very pale yellow solid. Yield
= 142 mg, 62 %. *H NMR (CDsCN, 400 MHz): 5.40-5.50 (m, 4H), 5.51 (d, J = 15.3 Hz, 1H), 5.56 (d, J =
15.2 Hz, 1H), 6.16-6.24 (m, 2H), 6.70 (td, J = 0.9, 7.4 Hz, 1H), 6.77-6.85 (m, 2H), 6.93 (t, J = 7.4 Hz, 1H),
7.14-7.30 (m, 7H), 7.30-7.43 (m, 10H), 7.46 (d, J = 7.2 Hz, 1H), 7.89-8.00 (m, 3H), 8.06 (s, 1H), 8.07 (s,
1H), 8.54 (s, 1H). *C NMR (CDsCN, 101 MHz): 56.02, 56.09, 56.15, 120.64, 120.80, 122.88, 122.99,
123.27, 123.37, 123.73, 126.11, 126.75, 128.44, 128.80, 129.15, 129.72, 129.85, 129.95, 130.04, 133.09,
133.89, 134.87, 135.32, 135.37, 136.72, 136.82, 140.26, 142.92, 145.89, 150.40, 150.87, 151.74, 157.70,
158.17. HRMS (ES); m/z calc. for CasHszsNiolr: 897.2748, found: 897.2746 (M"). Anal. Calc’d for

CasH3sN10lrPFg (%): C 50.72, H 3.48, N 13.44, found (%): C 50.58, H 3.40, N 13.47.

Synthesis of [Ir(ptz).(pymtz)][PFs] (3b)

2-(1-Benzyl-1,2,3-triazol-4-yl)pyrimidine (89 mg, 0.38 mmol), [{Ir(ptz).Cl}.] (260 mg, 0.19 mmol) and
excess NH4PFs (153 mg, 0.94 mmol) were added to deaerated 1:1 (v/v) CHCI; / MeOH (25 ml) and stirred
under N in the dark at 50 °C for 19 hours. The solvent was removed by rotary evaporation with the resulting
residue being redissolved in the minimum volume of CH,Cl,. Addition of hexane afforded a pale yellow
precipitate which was collected by filtration, washed with H.O (5 ml) followed by Et,O and dried in vacuo.
Purification was achieved via column chromatography (SiO;, 2% MeOH / CHCl), with further
recrystallisation from CH,CI. / hexane affording the product as a pale yellow coloured powder. Yield = 213

mg, 54 %.
S10



IH NMR (CDsCN, 400 MHz): 5.42-5.53 (m, 4H), 5.58 (d, J = 15.4 Hz, 1H), 5.63 (d, J = 15.3 Hz, 1H), 6.14-
6.21 (m, 2H), 6.72 (td, J = 1.2, 7.4 Hz, 1H), 6.81 (td, J = 1.2, 7.4 Hz, 1H), 6.86 (td, J = 0.8, 7.4 Hz, 1H), 6.95
(td, J = 0.8, 7.4 Hz, 1H), 7.16-7.30 (m, 6H), 7.30-7.44 (m, 11H), 7.47 (dd, J = 0.7, 7.5 Hz, 1H), 8.09 (s, br.
2H), 8.13 (dd, J = 2.1, 5.6 Hz, 1H), 8.71 (s, 1H), 8.88 (dd, J = 2.1, 5.0 Hz, 1H). *C NMR (101 MHz,
CDsCN): 56.15, 56.22, 120.73, 120.88, 122.81, 123.08, 123.44, 123.48, 124.00, 128.51, 128.62, 128.64,
128.89, 128.98, 129.21, 129.74, 129.77, 129.82, 129.96, 129.98, 130.02, 133.08, 133.78, 134.95, 135.25,
135.29, 136.70, 136.75, 142.02, 144.17, 148.25, 157.57, 157.94, 158.71, 160.14, 161.25. HRMS (ES); m/z
calc. for CasHssNaslr: 898.2701, found: 898.2701 (M*). Anal. Calc’d for CasHssNailrPFe (%): C 49.52, H

3.38, N 14.77, found (%): C 49.36, H 3.27, N 14.70.

Synthesis of [Ir(ptz).(pyztz)][PFe] (3c)

2-(1-Benzyl-1,2,3-triazol-4-yl)pyrazine (97 mg, 0.41 mmol), [{Ir(ptz).Cl}.] (283 mg, 0.20 mmol) and excess
NH4PFs (164 mg, 1.00 mmol) were added to deaerated 1:1 (v/v) CHCI3 / MeOH (25 ml) and stirred under N
at 50 °C in the dark for 19 hours. The reaction mixture was allowed to cool to room temperature, with
addition of excess hexane ensuring complete precipitation of the orange coloured product. The solids were
collected by filtration, being washed with H.O (5 ml) followed by Et,0 then dried in vacuo. Purification was
achieved via column chromatography (SiO,, 2% MeOH / CH,Cl,), with further recrystallisation from CHCl;
/ hexane affording the title complex as a pale orange solid. Yield = 227 mg, 53 %. *H NMR (CDsCN, 400
MHz): 5.41-5.51 (m, 4H), 5.58 (d, J = 14.9 Hz, 1H), 5.63 (d, J = 14.9 Hz, 1H), 6.14-6.20 (m, 2H), 6.73 (td, J
=1.0, 7.5 Hz, 1H), 6.82 (td, J = 1.0, 7.5 Hz, 1H), 6.87 (t, J = 7.4 Hz, 1H), 6.97 (t, J = 7.3 Hz, 1H), 7.20-7.29
(m, 6H), 7.33-7.41 (m, 9H), 7.43 (d, J = 7.4 Hz, 1H), 7.48 (d, J = 7.4 Hz, 1H), 7.93-7.97 (m, 1H), 8.08 (s,
1H), 8.09 (s, 1H), 8.50 (d, J = 3.0 Hz, 1H), 8.68 (s, 1H), 9.25 (d, J = 0.9 Hz, 1H). *C NMR (CDsCN, 101
MHz): 56.15, 56.22, 120.77, 120.92, 123.12, 123.45, 123.58, 124.10, 126.67, 128.58, 128.90, 128.95,
129.24, 129.74, 129.77, 129.95, 129.96, 130.08, 133.07, 133.66, 134.66, 135.21, 135.25, 136.55, 136.73,
142.32, 144.28, 144.30, 145.46, 146.40, 147.79, 148.00, 157.61, 157.86. HRMS (ES); m/z calc. for
CasHssN1alr: 898.2701, found: 898.2700 (M*). Anal. Calc’d for CasHssNulrPFs (%): C 49.52, H 3.38, N

14.77, found (%): C 49.06, H 3.00, N 14.66.
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13C NMR (126 MHz, d3-MeCN) spectrum of [(dfppy)2Ir(pymtz)][PFs] (2b)
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Figure S13  High resolution ESI mass spectrum of [(dfppy)2Ir(pymtz)][PFs] (2b). The expansion
shows detail of the cationic [CasH23N7F4Ir]* mass fragment.
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Figure S14 H NMR (400 MHz, d3-MeCN) spectrum of [(dfppy)2Ir(pyztz)][PFs] (2c)
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Figure S16  High resolution ESI mass spectrum of [(dfppy)2Ir(pyztz)][PFs] (2c). The expansion
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Figure S25  High resolution ESI mass spectrum of [(ptz):Ir(pyztz)][PFs] (3c). The expansion
shows detail of the cationic [Ca3HzsN11lr]" mass fragment.
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Crystallography.

Single crystal X-ray diffraction data was collected at 150(2) K on a Bruker D8 Venture diffractometer
equipped with a graphite monochromated Mo(K ) radiation source and a cold stream of N, gas. Solutions
were generated by conventional heavy atom Patterson or direct methods and refined by full-matrix least
squares on all F? data, using SHELXS-97 and SHELXL software respectively.” Absorption corrections were

applied based on multiple and symmetry-equivalent measurements using SADABS.8

Crystal for [Ir(dfppy)2(pymtz)][PFe] (2b): Crystal data for CasHzsF10lrN7P, M = 954.79, triclinic, a = 8.6072
(7), b = 13.0303 (11), ¢ = 16.3739 (13) A, a = 110.320 (2), B = 98.076 (3), y = 91.353 (3)°, V = 1699.9 (2)
A%, T = 150 K, space group P-1, Z = 2, 54259 reflections measured, 10477 independent reflections (Rint =
0.0502). The final R; values were 0.0338 (I > 25(1)). The final wR(F?) values were 0.0742 (I > 25(1)). The
final Ry values were 0.0450 (all data). The final wR(F?) = 0.0787 (all data). The goodness of fit on F? was
1.0445. CCDC 1953486. The structure contained a positionally disordered phenyl unit which was modelled
in two positions using the PART instruction. For the six disordered atoms SIMU, DELU and ISOR constrains

were used in the least-squares refinement.

Crystal for [Ir(dfppy)2(pyztz)][PFe] (2¢): Crystal data for CrzeHasF20lr2N14OP2, M = 1997.65, monoclinic, a =
15.093 (5), b = 10.413 (3), ¢ = 24.489 (8) A, p = 94.767 (16), V = 3835 (2) A3, T = 150 K, space group
P21/c, Z = 4, 46042 reflections measured, 11692 independent reflections (Rin: = 0.0572). The final Ry values
were 0.0469 (1 > 20(1)). The final wR(F?) values were 0.0935 (I > 25(1)). The final R; values were 0.0831 (all
data). The final wR(F?) = 0.1055 (all data). The goodness of fit on F?> was 1.0441. CCDC 1953487. The
structure contained a disordered molecule of diisopropylether which was refined using half occupancy (e.g.

10.5) and left isotropic in the least-squares refinement.

Crystal for 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole: Crystal data for C13H11Ns, M = 237.27, monoclinic, a
=9.5135 (7), b = 10.5680 (10), ¢ = 11.7424 (9) A, p = 100.156 (3), V = 1162.0 (17) A3, T = 150 K, space
group P21/c, Z = 4, 12387 reflections measured, 2876 independent reflections (Rinx = 0.0741). The final R:

values were 0.0556 (I > 2a(1)). The final wR(F?) values were 0.1213 (1 > 2o(1)). Peak 0.248 eA3, hole -0.304
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eA3, The final R; values were 0.0928 (all data). The final wR(F?) = 0.1385 (all data). The goodness of fit on

F* was 1.041. CCDC 1953488.

Figure S26. Molecular structure of 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (pymtz) (hydrogen atoms
removed for clarity, ellipsoids at 50 % probability).
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Figure S27. Excitation spectra recorded for aerated room temperature MeCN solutions of 1b, monitoring
photoluminescence at 475, 550, 620 and 650 nm. The UV-Visible electronic absorption profile of 1b in
MeCN is shown for comparison.
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Figure S28. Single photon counting kinetic decay traces obtained for the photoluminescence of 1b in
aerated MeCN solutions. Decay traces were collected over four consecutive 50 nm wide optically filtered
windows. Seperate fitting of each data set yielded a photoluminescence lifetime for 1b of 45 + 1 ns.

Remark — Solvent-Dependant Dual Emission of 1b

Solvent-dependent emission spectra recorded for 1b are shown in the main manuscript within Figure 6. Dual
emission is observed in all solvents with varying contributions from each of the two emissive states. 3LC
emission appears at a Amax that is not influenced by the polarity, unlike Amax Of 3LL’CT emission for which a
positive solvatochromism was observed with increasing polarity of the solvent. This may be described

. . L - 2(ir—THgs)? [ €-1
according to the following equation ¥ = 7, — (”2653“) (28+1
0

), (where 75 and ¥, are wavenumbers of the
emission maxima in solvent and in vacuum respectively, ji; and [i;s are the permanent dipole moment of
the triplet and ground state respectively, ¢ the dielectric constant of the solvent and the factor hcag® can be
considered as a constant in the series of complexes). Indeed we can split the solvents used in our studies into
two sets: 2-Me-THF and DCM can be considered as non-polar solvents (s, np) while acetone, acetonitrile
and ethanol/methanol mix can be considered as polar solvents (s,p). Calculation of the wavenumber shift
( Vs,p — Vsnp) leads to a negative value for LL’CT. Consequently, Amax in the polar solvent will be red-
shifted with respect to Amax in the non-polar solvent. This is the trend observed in figure 6. Concerning 3LC
emission, the difference between the magnitude of the excited-state and ground-state dipole moment (pr—
ucs) is zero, thus the effect of the solvent polarity is removed and the *LC emission is solvent insensitive.
This semi-quantitative reasoning does not exclude more subtle interactions which may affect emission
maxima, such as potential Coloumbic interactions between complex and counter-ion.

S39



Table S1 Summarised lifetime data obtained from variable temperature photoluminescence
spectroscopy of 2Me-THF solutions of 1a-2c at 100 K and 295 K. (* 315 K).

T/ 18
100 K 295 K
la 4471 95
1b 4680 372
1c 4491 117
2a 5262 404
2b 5944 89
2¢C 5073 365
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Transient Absorption

A broadband ultrafast pump-probe transient absorbance spectrometer ‘Helios’ (Ultrafast Systems LLC) was
used to collect data over a 3 ns time window with a time resolution of around 250 fs. A Ti:sapphire amplifier
system (Newport Spectra Physics, Solstice Ace) producing 800 nm pulses at 1 kHz with 100 fs pulse
duration was used to generate the probe beam, and to pump a TOPAS Prime optical parameter amplifier with
associated NirUVis unit to generate the excitation beam. The probe beam consisted of a white light
continuum generated in a CaF, crystal and absorbance changes were monitored between 340 and 620 nm.
Samples were excited with 0.5 pJ at 285 nm and were contained in 0.2 mm path length quartz cuvettes and
magnetically stirred during measurements. Before data analysis the pre-excitation data were subtracted and

spectral chirp was corrected for.

2a 2b 2¢c
0.020 0.016
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e 0,012
0.016
0.012
0.008
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Q
8 0.008
2 a Q
0006 8 8 oo
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Figure S29 Top: Chirp-corrected transient absorption spectra at selected time delays for MeCN solutions

of complexes 2a-2¢c (Aex = 285 nm). Bottom: Associated decay traces at representative wavelengths for 2a-
2c. Markers show experimental data. Solid lines correspond to fitting curves generated through global
analysis.
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Table S2

Summarised kinetic time constants obtained through global analysis for transient absorption
spectra of complexes 1a-2c and 2a-2c in MeCN solutions with excitation at 285 nm.

Rise Decay
11/ pS 12/ psS 11/ ps T2/ ps
la 0.20 £0.01 15.41 +0.52 - -
1b 0.15+0.01 - 12.62 +0.12 -
1c 0.09+0.01 - 0.96 +0.01 21.82 +0.35
2a 0.23+0.01 1491 +1.00 - -
2b 0.25£0.01 5.68+0.24 - -
2C 0.18 £0.01 - 2.72 £0.03 24.62 +0.79

Computational details

All calculations have been performed with ORCA Quantum Chemistry software.® 1° The structures of all
complexes, in their respective ground and lowest excited triplet states, have been fully optimized at the
DFT/(U)DFT levels with hybrid functional B3LYP,' 2 including Grimme’s dispersion correction (D3-
BJ),** 1 with a triple-{ Ahlrichs basis set, namely def2-TZVP(-f), with a p polarization function for the H
atoms, two d polarization functions for the second row elements, and for the iridium the triple-C basis set
def2-TZVPP with two f and one g polarization functions and its associated relativistic effective core
potential.*> Following geometry optimizations, vibrational frequency analyses were performed at the same
level of theory to verify the nature of the stationary points. The absorption spectra have been calculated by
means of TD-DFT/B3LYP applied to the lowest 40 states. In these TD-DFT calculations the resolution-of-
identity (RI) approximation for hybrid functionals (as implemented in ORCA) was employed to calculate the
Coulomb energy term using the Ahlrichs/Weigand Def2-TZV basis as the auxiliary basis set and the
exchange term by the so-called ‘chain-of-spheres exchange’ (COSX) algorithm. In order to analyse the
nature of the electronic transitions in the TD-DFT spectra, the Natural Transition Orbitals (NTO) were
computed. Previous studies have shown that B3LYP accurately reproduces structural and energetics of Ir(I11)
complexes. & 17 Solvent effects were simulated using the Solvation Model (SMD) that has been proposed by
Cramer and Truhlar.®

Acetonitrile, tetrahydrofuran and ethanol were used as solvent in this work in order to employ the same

solvents as those used in the experimental work.

Minimum energy paths were optimized in SMD-MeCN*® with the nudged elastic band (NEB) method * %
using a python module developed in the Clancy group that is interfaced with Orca.?* A 10-frame initial path

was prepared by interpolating start and end geometries using the IDPP method.?

The IMDHO(T) model in ORCA_ASA was used to compute vibrationally resolved electronic spectra.?® This

procedure includes vibrational effects in a pure harmonic approximation for ground and excited states,
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without taking into account Duschinsky effects. To generate the vibrational emission spectra corrected by
vibrational effects, ORCA_ASA uses the optimized ground and excited state minima and the corresponding
Hessians. IMDHO(T) model is based on two approximations which can influence the quality of the results.
The first approximation consists in assuming that the vibrations of the excited state are the same as those of
the ground state, the second one might be more severe as it considers that emission occurs at a point of the
potential energy surface that is still on the harmonic part of the PES of the relaxed excited state neglecting
the effect of relaxation on the transition moments. This procedure requires the calculation of the
displacement of the excited state equilibrium geometry relative to the ground state geometry in
dimensionless normal coordinates (DDNC). The Huang-Rhys factors frequently used to analyse
experimental resolved emission spectra are related to the square of the DDNC values used in our analysis. 2*
Here, DDNC calculations also serve to identify the vibrational modes involved in the conversion between
different types of triplet states, i.e *MLCT/LC vs. SMLCT/LL’CT. To simulate the spectral broadening we

use a Gaussian convolution with an effective FWHM of 320 cm™ at 0 K.
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Figure S30. Molecular orbital energies and isosurface plots for HOMO to LUMO+2 for complexes 2a (left),
2b (middle) and 2c (right). The green square highlights LUMO+1, whose localisation varies.
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and dfppy complexes with pytz and pyztz ancillary ligands.

Figure S32. Spin densities for computed 3SMLCT/ALC and 3MLCT/LL’CT states of complexes 1a to 3c in
MeCN using SMD model.
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3c

In order to confirm interpretations of the experimental electrochemical data, calculations were carried out to

optimise the doublet states deriving from oxidation and reduction of the complexes. The observed

localisation for the spin densities of the dicationic oxidised forms of the complexes are well matched to the

distributions of the HOMO for the monocationic closed-shell forms of the complexes (Figure S33). In the

case of the singly reduced charge neutral forms, the spin density is localised on the N~N ancillary ligand

with the unpaired electron exhibiting greater localisation on the 6-membered heterocycle. Plots of the

experimentally derived Eox and Ereq against calculated HOMO and LUMO energies respectively give a good

correlation, as do plots of Eox and Ers against the calculated adiabatic energy differences between the

oxidised form and ground state and the reduced form and ground state respectively (Figure S33).

Figure S33. Spin densities for computed one-electron oxidised and reduced forms of complexes 1a to 3c in

MeCN using SMD model.
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3c

TD-DFT calculated absorption spectra

UV-visible absorption spectra were calculated using time-dependent DFT calculations and are shown in
Figure S34. The calculated spectra agree well with those obtained experimentally with the spectra for 3a-c
exhibiting the most blue-shifted absorption profiles. Calculations confirm the assignment of features at 250
to 300 nm as arising from n—n* 1LC transition associated with the NN and C*N ligands with transitions at

lower energies having *MLCT character.

° °

Normalised absorption / a.u.

Normalised absorption / a.u.

°

250 300 350 400 450 500 550 600 250 300 350 400 450 500 550 600 250 300 350 400 450 500 550 600
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Figure S34. Calculated UV-visible absorption spectra for complexes 1a to 3c in MeCN using SMD model.
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Figure S35. Vibrationally resolved emission spectra for the *MLCT/ALC and *MLCT/LL’CT states of 1a to
3c at 77 and 300 K (SMD: ethanol).
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Theoretical analysis of the vibronic emission spectra of compound la.

Emission spectra from SMLCT/LC states present marked structures and to the best of our knowledge,
theoretical calculations are very scarce.?®

The simulated emission spectra from *MLCT/3LC states studied here are very similar, so we decided to focus
on complex 1a to provide a better understanding of the emission bandshape of this family of complex.

The agreement between experiment and theory is good and the main experimental features are accurately
reproduced despite a slight underestimation of the relative intensity of the Eo.o transition. The DDNC, which
describe geometry deformation, collected in Figure S37 clearly show that only a very complex combination
of modes, i.e multi-mode, can explain the bandshape. Hence to identify the vibrations at the origin of the
multi-peak emission spectrum, we have adopted the following protocol :

(i firstly we simulate the luminescence spectrum by neglecting all the displacements, consequently
all the vibronic effects (insert in Figure S36a) disappear,

(i) secondly we restore the effect of each vibration one by one (Figure S36a-f) by giving to the
displacement shift its initial value. Doing so, we have identified six groups of frequencies named
Veff,1 to Veff 6.

At the end of this procedure, the “step by step” simulated spectrum (Figure S36f) must reproduce the initial
one. Our analysis shows that these emission spectra can be viewed as several superimposed progressions of
different bandshapes. Contributions are due to mixed excitation of several effective vibrational modes (C-C,
C-N, stretching, C-H wagging and valence deformation such as CCH, CCC, CCN of phenylpyridine and
ancillary ligand) and are spread over the three bidentate ligands. The major structuration (Figure S36a), i.e
the most intense peaks, arises from a combination of modes (verr1 = 157-154 and 149-147) describing
collective stretches as C-C and C-N coupled with CH wagging motions (see Figure S36a pink arrows,
Figures S37 and S38) and progresses by an interval of 0.19 eV.

In addition a much weaker series of progressions arises from modes verr2 t0 verrs, involving collective
stretching, deformation and rocking of the ligand rings (see more details in Figures S36, S37 and S38).

The last contribution to the emission spectrum, mostly by increasing the second peak intensity, is a low-
frequency mode (vetrs= 46 cm?) responsible for the rocking of the entire ligands.
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Figure S36. Step by step procedure for the identification of effective frequencies numbered from 1 to 6.
Each contribution is spotted by different colored arrows.
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Figure S37. Adimensional displacements and their associated frequencies. Color code is the same as in

Figure S36.
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Figure S38. Representation of the atomic displacements involved in the modes responsible for the multi-
peak emission spectrum of *MLCT/LC of 1a.
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Theoretical analysis of the vibrational resolved emission spectrum of the SMLCT/FLL’CT state of
compound 1b.

By reducing the line broadening factors, we can favor the appearance of the fine structure and discuss of the
vibronic progressions even though it not visible on experimental spectra.

This spectrum is easier to analyze than the previous one (e.g. 1a), as very few vibrational modes dominate
the emission spectrum of 1b. Consequently the strategy to identify the vibrational mode responsible for the
structure was different. We removed from the calculation all modes with a large ddnc (see Figure S39). In
case the resulting spectrum is affected, this is a strong indication of the importance of this mode in the
structuration. The results of these protocol is presented on Figure S39. The main contribution is due to a
combination of modes 132-134, the maximum wavelength coinciding with the 0> 1 transition. These modes
are localized solely on a unique ligand i.e the ancillary ligand, contrary to what is observed in the 3LC case.
They correspond to in-plane C-Haromatic wagging and C-C stretching (see Figure S40). The intense
contribution localised at large wavelength, near 640 nm, is due to mode 158 and corresponds to a high-
frequency vibration (3080 cm™) involving methyl CH stretching (Figure S40). This is clearly a drawback of
our model, Bn being replaced by Me, and might explain the less impressive agreement between theory and
experiment for the 3LL'CT case.
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Figure S40. Representation of the atomic displacements involved in the modes responsible for the emission
spectrum of SMLCT/ALL’CT of 1b.
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Figure S44. Transition state mode at the highest energy point along the *MLCT/LL’CT - 3MLCT/ALCle
minimum energy paths for 1a (left) and 1b (right) in MeCN using SMD model.
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