Hybrid Thin Film Encapsulation for All-Solid-State Thin Film Batteries

HyunSeok Lee,†,‡,§# Keun Yong Lim,§,‡,#, Kwang-Bum Kim,§ Jae-Woong Yu,∥ Won Kook Choi,§,* and Ji-Won Choi †,∇,*

† Center for Electronic Materials, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14 gil, Seongbuk-Gu, Seoul 02792, Korea

‡ Energy Conversion and Storage Materials Laboratory, Department of Material science and Engineering, Yonsei University, 262 Seongsanno, Seodaemun-Gu, Seoul 120-749, Korea

§ Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea

* Corresponding author.
∇ E-mail: jwchoi@kist.re.kr
Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Deogyeong-daro 1732, Giheung-gu, Yongin, Gyeonggi 17104, Korea

Division of Nano & Information Technology, KIST School, Korea University of Science and Technology (KUST), 5, Hwarang-ro 14 gil, Seongbuk-Gu, Seoul 02792, Korea

These authors contributed equally to this work.

*Corresponding author: Ji-Won Choi at jwchoi@kist.re.kr; Won Kook Choi at wkchoi@kist.re.kr
Figure S1. The WVTR of single a-SiN$_x$/PET and SiO$_y$/PET layer.
Figure S2. SEM image of the samples after oxidation (a) ASSTFBs without TFE, (b) ASH/Parylene/ASSTFBs and (c) before oxidation ASH/Parylene/ASSTFBs.
Figure S3. Schematic of thin film batteries structure.
Table S1. Charge transfer impedance of the solid electrolyte: (a) LiPON without TFE, (b) Parylene/LiPON, (c) ASH/LiPON, and (d) ASH/Parylene/LiPON by fitting the graph into a simulation.

<table>
<thead>
<tr>
<th></th>
<th>As-deposited [kΩ]</th>
<th>After TFE [kΩ]</th>
<th>After 7 d [kΩ]</th>
<th>After 30 d [kΩ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) LiPON without TFE,</td>
<td>2.4</td>
<td>-</td>
<td>26.9</td>
<td>655.9</td>
</tr>
<tr>
<td>(b) Parylene/LiPON</td>
<td>2.5</td>
<td>2.5</td>
<td>3.8</td>
<td>278.2</td>
</tr>
<tr>
<td>(c) ASH/LiPON</td>
<td>2.7</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>(d) ASH/Parylene/LiPON</td>
<td>2.5</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
</tbody>
</table>