Aggregation-Induced Emission and Organogels with Chiral and Racemic
Pyrene substituted Cyanostyrenes

Palash Jana and Sriram Kanvah*

*Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355,
E-mail: sriram@iitgn.ac.in, kanvah@gmail.com

Supporting Information

Characterization data of the synthesized compounds
Absorption, Emission spectra for the synthesized compounds
Cryo-SEM, drop-cast SEM, DLS data & NMR-study
\(^1\)H&\(^{13}\)C-NMR spectra of synthesized compounds

\(^1\)H, \(^{13}\)C NMR Characterization data of the intermediate phenolic derivatives.

Compound 7: Yield 70% (400mg), Mp: 292-295 °C, \(^1\)H-NMR (500MHz, DMSO-d6), \(\delta\) (ppm)
10.02 (s, 1H), 8.82 (s, 1H), 8.54-8.49 (dd, 2H), 8.43-8.39 (m, 3H), 8.35-8.34 (d, 1H), 8.31-8.25 (dd, 3H), 8.17-8.14 (t, 1H), 7.83-7.81 (d, 2H), 6.98-6.96 (d, 2H)

\(^{13}\)C-NMR (125MHz, DMSO-d6): \(\delta\) (ppm), 159.35, 138.43, 132.26, 131.30, 130.85, 129.58, 129.38, 128.92, 128.87, 128.22, 127.79, 127.14, 126.70, 126.56, 126.42, 126.56, 126.70, 126.56, 126.42, 125.29, 125.10, 124.32, 124.16, 124.09, 118.65, 116.48, 115.11, HRMS (ESI-Q-TOF): C\(_{25}\)H\(_{15}\)NO [M + H]+: cal. \(m/z\)346.1226, found, \(m/z\) 346.1234 (error 2.3 ppm)

Compound 8: Yield 70% (450mg) Mp: 273-276 °C, \(^1\)H-NMR (500MHz, DMSO-d6), \(\delta\) (ppm)
9.55 (s, 1H), 9.33 (s, 1H), 8.72 (s, 1H), 8.53-8.51 (d, 2H), 8.48-8.46 (d, 2H), 8.41-8.38 (m, 2H), 8.34-8.32 (d, 1H), 8.30-8.24 (dd, 2H), 8.16-8.13 (t, 1H), 7.37 (s,1H),7.32-7.30 (dd, 1H), 6.94-6.93(d, 1H)

\(^{13}\)C-NMR (125MHz, DMSO-d6): \(\delta\) (ppm) 147.70, 146.30, 138.15, 132.22, 131.30, 129.55, 129.40, 128.87, 127.80, 127.14, 126.72, 126.56, 126.41, 125.56, 125.29, 124.32, 124.16, 124.04, 118.71, 118.31, 116.57, 115.33, 113.94, HRMS (ESI-Q-TOF): C\(_{25}\)H\(_{15}\)NO\(_2\) [M + H]+: cal. \(m/z\)362.1176, found, \(m/z\) 362.1187 (error 3ppm)

Compound 9: Yield 65% (370mg) Mp: 250-255 °C, \(^1\)H-NMR (500MHz, DMSO-d6), \(\delta\) (ppm)
9.28 (s, 1H), 8.75(s,1H), 8.64 (s, 1H), 8.52-8.50 (d, 1H), 8.46-8.39 (m, 4H), 8.35-8.33 (d, 1H), 8.31-8.25 (dd, 2H), 8.17-8.14 (t,1H), 6.94 (s, 2H)
\(^{13}\)C-NMR (125MHz, DMSO-d6): \(\delta\) (ppm) 146.99, 137.99, 135.57, 132.20, 131.30, 129.51, 129.36, 128.88, 127.79, 127.14, 126.72, 126.56, 126.40, 125.27, 124.65, 124.32, 124.16, 123.94, 118.73, 115.58, 105.85. HRMS (ESI-Q-TOF): \(C_{25}H_{15}NO_3\) [M + H]^+: cal. \(m/z\) 378.1125, found, \(m/z\) 378.1134 (error 2.4ppm)

\(^1\)H, \(^{13}\)C NMR Characterization data of the compounds

Compound (1) MA: Yield 65% (130mg): Yellow solid, m.p.: 105-110°C, \(\epsilon\) in CH\(_3\)CN = 14449 M\(^{-1}\)cm\(^{-1}\), \(^1\)H-NMR (500MHz, CDCl\(_3\)), \(\delta\) (ppm): 8.63-8.62 (d, 1H), 8.46 (s,1H), 8.29-8.26 (m, 4H), 8.25-8.24 (d, 2H), 8.06-8.05 (dd, 1H), 7.78-7.76 (d, 2H), 7.04-7.02 (d, 2H), 5.14-5.11 (t, 1H), 4.11-4.07 (m, 2H), 2.05-1.57 (m,16H), 1.43-1.41 (d, 3H)

\(^{13}\)C-NMR (125MHz, CDCl\(_3\)): \(\delta\) (ppm) 160.27, 138.01, 132.57, 131.40, 130.76, 129.72, 128.57,128.54, 128.37, 127.55, 127.46, 126.92, 126.29, 126.11, 125.88, 124.98, 124.77, 124.65, 122.71, 118.34, 115.13, 114.63, 109.81, 66.63, 37.16, 37.16, 36.09, 29.59, 25.74, 25.49, 19.60, 17.70, HRMS (ESI-Q-TOF): \(C_{35}H_{34}NO\) [M + H]^+: cal. \(m/z\) 484.2635, found, \(m/z\) 484.2650 (error 3ppm)

Compound (2) MC: Yield 65% (130mg): Yellow solid, Mp: 105-110°C, \(\epsilon\) CH\(_3\)CN = 14449 M\(^{-1}\)cm\(^{-1}\), \(^1\)H-NMR (500MHz, CDCl\(_3\)), \(\delta\) (ppm): 8.63-8.62 (d, 1H), 8.46 (s,1H), 8.29-8.23 (d, 2H), 8.19-8.17 (d, 1H) 8.15-8.09 (dd, 2H), 7.78-7.76 (d, 2H), 7.41-7.39 (dd, 1H), 7.00-6.98 (d, 1H), 5.13-5.11 (t, 1H), 4.11-4.07 (m, 2H), 2.17-1.25 (m, 23H), 1.01-0.99 (d, 6H)

\(^{13}\)C-NMR (125MHz, CDCl\(_3\)): \(\delta\) (ppm) 150.61, 149.53, 138.35, 132.60, 131.35, 130.31, 131.84, 130.78, 129.73, 128.60, 128.56, 127.48, 127.42, 126.32, 126.21, 126.13, 125.90, 125.00, 124.79, 124.73, 124.70, 124.65, 122.78, 119.45, 118.33, 114.95, 113.59, 111.68, 68.00, 67.70, 37.27, 37.23, 36.35, 36.11, 29.75, 29.73, 25.72, 25.70, 25.55, 19.65, 19.63, 17.66, HRMS (ESI-Q-TOF): \(C_{45}H_{52}NO_2\) [M + H]^+: cal. \(m/z\) 638.3993, found, \(m/z\) 638.4020 (error 4ppm)

Compound (3) DA: Yellow semi-solid, \(\epsilon\) (CH\(_3\)CN) = 15596 M\(^{-1}\)cm\(^{-1}\), Yield 55% (120mg), \(^1\)H-NMR (500MHz,CDC\(_3\)) \(\delta\) (ppm): 8.61-8.60 (d, 1H), 8.44 (s, 1H), 8.28-8.23(dd, 4H) 8.19-8.17 (d, 1H) 8.15-8.09 (dd, 2H), 8.13-8.09 (dd, 1H), 7.41-7.39 (dd, 1H), 7.33 (s, 1H), 7.00-6.98 (d, 1H), 5.13-5.11 (m, 2H), 4.16-4.11 (m, 2H), 2.17-1.25 (m, 23H), 1.01-0.99 (d, 6H)

\(^{13}\)C-NMR (125MHz, CDCl\(_3\)): \(\delta\) (ppm) 150.61, 149.53, 138.35, 132.60, 131.35, 131.31, 131.84, 130.78, 129.73, 128.60, 128.56, 127.48, 127.42, 126.32, 126.21, 126.13, 125.90, 125.00, 124.79, 124.73, 124.70, 124.65, 122.78, 119.45, 118.33, 114.95, 113.59, 111.68, 68.00, 67.70, 37.27, 37.23, 36.35, 36.11, 29.75, 29.73, 25.72, 25.70, 25.55, 19.65, 19.63, 17.66, HRMS (ESI-Q-TOF): \(C_{45}H_{52}NO_2\) [M + H]^+: cal. \(m/z\) 638.3993, found, \(m/z\) 638.4020 (error 4ppm)

Compound (4) DC: Yellow semi-solid, \(\epsilon\) in CH\(_3\)CN = 15596 M\(^{-1}\)cm\(^{-1}\), Yield 60%(120mg): \(^1\)H-NMR (500MHz,CDC\(_3\)) \(\delta\) (ppm): 8.61-8.60 (d, 1H), 8.44 (s,1H), 8.28-8.23 (dd, 4H) 8.19-8.17

(d, 1H) 8.15-8.09 (dd, 2H), 8.13-8.09 (dd, 1H), 7.41-7.39 (dd, 1H), 7.33 (s, 1H), 7.00-6.98 (d, 1H), 5.13-5.11(m, 2H), 4.16-4.11(m, 4H), 2.17-1.25 (m, 23H), 1.01-0.99(d, 6H)

13C-NMR (125 MHz, CDCl$_3$): δ (ppm) 150.61, 149.53, 138.35, 132.60, 131.35, 131.31, 131.84, 130.78, 129.73, 128.60, 128.56, 127.48, 127.42, 126.32, 126.21, 126.13, 125.90, 125.00, 124.79, 124.73, 124.70, 124.65, 124.62, 122.78, 119.45, 118.33, 114.95, 113.59, 111.68, 68.00, 67.70, 37.27, 37.25, 36.35, 36.11, 29.75, 29.73, 25.72, 25.70, 25.55, 19.65, 19.63, 17.66, HRMS (ESI-Q-TOF): C$_{45}$H$_{52}$NO$_2$ [M + H]$^+$: cal. m/z 638.3993, found, m/z 638.4020 (error 4ppm)

Compound (5) TA: Yellow liquid, (ε) in CH$_3$CN= 10621 M$^{-1}$cm$^{-1}$, Yield 50% (159mg): 1H-NMR (500MHz, CDCl$_3$), δ (ppm): 8.60-8.59 (d, 1H), 8.4 (s,1H), 8.27-8.24 (m,4H), 8.20-8.18 (d,1H), 8.18-8.16 (dd, 2H), 8.12-8.05 (dd, 1H), 7.01(s, 2H), 5.13-5.11 (m,3H), 4.15-4.0 (m,6H), 2.04-1.22 (m,48H), 0.99-0.97 (t, 9H),

13C-NMR (125MHz, CDCl$_3$): δ (ppm) 153.64, 139.72, 139.61, 132.75, 131.34, 131.23, 131.09, 130.77, 129.79, 129.76, 128.70, 128.31, 127.48, 126.36, 126.24, 126.22, 125.99, 135.02, 124.91, 124.78, 124.69, 124.62, 122.76, 115.24, 105.13, 71.87, 67.81, 37.39, 37.28, 37.25, 37.23, 29.62, 29.52, 29.34, 25.71, 25.69, 25.38, 19.57, 19.54, 19.51, 17.67, 17.62, HRMS (ESI-Q-TOF): C$_{55}$H$_{70}$NO$_3$ [M + H]$^+$: cal. m/z 792.5350, found, m/z 792.5375 (error 3.1ppm)

Compound (6) TC: Yellow liquid, (ε) in CH$_3$CN = 10621 M$^{-1}$cm$^{-1}$, Yield 50% (159mg): 1H-NMR (500MHz, CDCl$_3$), δ (ppm): 8.60-8.59 (d, 1H), 8.4(s,1H), 8.27-8.24 (m,4H), 8.20-8.18 (d, 1H), 8.18-8.16 (dd, 2H), 8.12-8.05 (dd, 1H), 7.01(s, 2H), 5.13-5.11(m, 3H), 4.15-4.0(m, 6H), 2.04-1.22 (m,48H) 0.99-0.97 (t, 9H)

13C-NMR (125MHz, CDCl$_3$): δ (ppm) 153.64, 139.72, 139.61, 132.75, 131.34, 131.23, 131.09, 130.77, 129.79, 129.76, 128.70, 128.31, 127.48, 126.36, 126.24, 126.22, 125.99, 135.02, 124.91, 124.78, 124.69, 124.62, 122.76, 115.24, 105.13, 71.87, 67.81, 37.39, 37.28, 37.25, 37.23, 29.62, 29.52, 29.34, 25.71, 25.69, 25.38, 19.57, 19.54, 19.51, 17.67, 17.62, HRMS (ESI-Q-TOF): C$_{55}$H$_{70}$NO$_3$ [M + H]$^+$: cal. m/z 792.5350, found, m/z 792.5375 (error 3.1ppm)
Fig.S1 Absorption spectra of a) MA b) MC in different organic solvents and water. Concentration 20µM, ExWl 385nm

Fig.S2 Absorption spectra of a) TA b) TC in different organic solvents and water. Concentration 20µM, ExWl 385nm
Fig S3 Normalized Emission spectra of a) DA b) DC in different organic solvents and water. Concentration 20μM, ExWl 385nm

Fig.S4 Normalized Emission spectra of a) TA b) TC in different organic solvents and water. Concentration 20μM, ExWl 385nm
Fig. S5 Emission spectra of a) MA b) MC in water/binary mixture. Concentration 20μM, ExWl 380nm

Fig. S6 Emission spectra of a) TA b) TC in water/binary mixture. Concentration 20μM, ExWl 385nm

Fig. S7 Lifetime decay of a) MA & b) MC in 90% water solution at 405nm excitation
Fig.S8 Lifetime decay of a) DA & b) DC in 90% water solution at 405nm excitation.

Fig.S9 Lifetime decay of a) TA & b) TC in 90% water solution at 405nm excitation.
Fig.S10 Cryo-SEM images of MC, DC and TC.
Fig.S11 DLS data of a) MA, b) MC, c) DA, d) DC, e) TA, and f) TC.
Fig S12: Dropcast SEM images obtained for a) MA, MC b) DA, DC and c) TA and TC
Fig. S13 The emission of organogels of a) MA and b) DA and their solution state.

Fig. S14 The emission spectra of MA & MC in solid state. Ex. W1 385nm
Fig. S15 Powder XRD data of DA & DC obtained in its xerogel state. The compounds are semisolids and hence powdered measurement was not performed.

Fig. S16 1H-NMR titration spectra of MA in CDCl$_3$ solution (aromatic region)
Fig. S17 1H-NMR titration spectra of DA in CDCl$_3$ solution (aromatic region)

Fig. S18 1H-NMR titration spectra of MA in CDCl$_3$ solution (aliphatic region)
Fig.S19 1H-NMR titration spectra of DA in CDCl$_3$ solution (aliphatic region)
Fig.S20 1H and 13C NMR spectrum of monohydroxystilbene 7

Fig.S21 1H and 13C NMR spectrum of dihydroxystilbene 8
Fig.S22 1H and 13C NMR spectrum of trihydroxystilbene 9
Fig. S23 1H and 13C NMR spectrum of MA I
Fig. S24 1H and 13C NMR spectrum of MC 2
Fig. S25 1H and 13C NMR spectrum of DA 3
Fig. S26 1H and 13C NMR spectrum of DC 4
Fig. S27 1H and 13C NMR spectrum of TA 5
Fig.S28 1H and 13C NMR spectrum of TC 6.