Mineral Scale Prevention on Electrically Conducting Membrane Distillation Membranes using

Induced Electrophoretic Mixing

Unnati Raoa, Arpita Iddyaa, Bongyeon Junga, Chia Miang Khora, Craig Turchib, Tzahi Cathc, Zachary Hendrend, Eric M.V. Hoeka, Guy Z. Ramone, David Jassbya, *

aDepartment of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095-153, USA

bNational Renewable Energy Lab, Department of Energy, Golden, Colorado 80401, United States

cDepartment of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States

dRTI International – Energy Technology Division, 3040 Cornwallis Rd, Research Triangle Park, NC 27709

eDepartment of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel

* Corresponding Author, jassby@ucla.edu

Submitted for Potential Publication in

Environmental Science & Technology
Table S1: Calcium sulfate scaling solution recipe

<table>
<thead>
<tr>
<th>Salt</th>
<th>Concentration (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$SO$_4$</td>
<td>10.500</td>
</tr>
<tr>
<td>MgSO$_4$</td>
<td>14.500</td>
</tr>
<tr>
<td>CaCl$_2$</td>
<td>16.400</td>
</tr>
<tr>
<td>pH</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Table S2: Silicate scaling solution recipe

<table>
<thead>
<tr>
<th>Salt</th>
<th>Concentration (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$SiO$_3$.5H$_2$O</td>
<td>8.985</td>
</tr>
<tr>
<td>AlCl$_3$.6H$_2$O</td>
<td>0.051</td>
</tr>
<tr>
<td>BaCl$_2$.2H$_2$O</td>
<td>0.010</td>
</tr>
<tr>
<td>FeCl$_3$.6H$_2$O</td>
<td>0.026</td>
</tr>
<tr>
<td>CaCl$_2$.2H$_2$O</td>
<td>1.439</td>
</tr>
<tr>
<td>KCl</td>
<td>1.372</td>
</tr>
<tr>
<td>MgCl$_2$.6H$_2$O</td>
<td>0.605</td>
</tr>
<tr>
<td>Na$_2$SO$_4$</td>
<td>0.774</td>
</tr>
<tr>
<td>pH</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure S1: Saturation indices of minerals that could potentially precipitate in the feed during the desalination of silicate solution.
Calculation of saturation index along the membrane surface

\[c_m = c_b \times \exp \left(\frac{J}{\rho K} \right) \] \hspace{1cm} \text{Equation S1}

Where, \(c_m \) is the salt concentration at the membrane surface, \(c_b \) the salt concentration in the bulk, \(J \) the flux of water across the membrane, \(\rho \) the density of water, and \(K \) the solute mass transfer coefficient. The solute mass transfer coefficient can be calculated using the Graetz-Leveque mass transfer analogy:

Figure S2: System process diagram

Figure S3: Chronoamperometry curves with CNT membrane and metal plate (Pt-Ti) as electrodes for (a) CaSO_4 and (b) silicate solution.
Equation S2

\[Sh = 1.86(Re \times Sc \times \frac{d_h}{L})^{0.33} \]

where \(L \) is the length of the channel, \(d_h \) is the hydraulic diameter, and \(Sh \) and \(Sc \) are Sherwood and Schmidt numbers respectively, which can be calculated using:

\[Sh = \frac{K \times d_h}{D} \] \hspace{1cm} \text{Equation S3}

\[Sc = \frac{\mu}{\rho \times D} \] \hspace{1cm} \text{Equation S4}

where \(\mu \) is the viscosity of water, and \(D \) the diffusion coefficient of the solute.

The flux (\(J \)) in equation 2 is calculated by iteratively solving for the membrane surface temperatures on the feed and permeate side using eq. 7-15. Temperature difference in MD system leads to heat transfer from the hot feed to cold permeate. In addition to heat transfer, vaporization of water at the feed side leads to a further decline in temperature due to loss of latent heat. To account for the polarization effect, we assume steady state conditions with heat transfer (\(Q \)) in the bulk of the feed and permeate to be equal to the heat transferred across the membrane:

\[Q = h_f(T_{bf} - T_c) = h_c(T_c - T_{mp}) + J = h_m(T_{mf} - T_{mp}) = h_p(T_{mp} - T_{bp}) \] \hspace{1cm} \text{Equation S5}

\[T_{mp} = T_{bp} + \frac{(T_{bf} - T_{bp})}{h_p} \left[\frac{1}{(1/h_m) + (1/(h_c + h_v)) + (1/h_f) + (1/h_p)} \right] \] \hspace{1cm} \text{Equation S6}

\[T_c = T_{bf} - \frac{(T_{bf} - T_{bp})}{h_f} \left[\frac{1}{(1/h_m) + (1/(h_c + h_v)) + (1/h_f) + (1/h_p)} \right] \] \hspace{1cm} \text{Equation S7}

where \(T_{bp} \) and \(T_{bf} \) are the bulk permeate and feed temperatures respectively, \(T_c, T_{mf}, T_{mp} \) are the temperatures of the CNT surface, PP membrane surface, and PP back side (i.e., permeate side), and \(h_f, h_p, h_m, h_v, \) and \(h_c \) are the heat transfer coefficients on the feed side, permeate side, membrane, vapor and the CNT layer respectively (calculated from equations 9-15). \(h_f \) and \(h_p \) are calculated using the Nusselt equation:

\[h_x = \frac{Nu_x \cdot k_x}{d_h} \] \hspace{1cm} \text{Equation S8}

where, \(k_x \) is the fluid thermal conductivity.

\(Nu_x \) in equation 9 is the Nusselt number, obtained using the equation:

\[Nu = 1.86(Re \times Pr \times \frac{d_h}{L})^{0.33} \] \hspace{1cm} \text{Equation S9}

Where, Reynolds number, \(Re = \frac{d_h \cdot v \cdot \rho}{\mu} \) \hspace{1cm} \text{Equation S10}

And Prandtl number, \(Pr = \frac{c_p \cdot \mu}{k} \) \hspace{1cm} \text{Equation S11}

where \(v \) is the velocity, \(c_p \) is the specific heat capacity, and \(k \) is the thermal conductivity of the fluid.

\(h_m, h_v, \) and \(h_c \) are determined as:
\[h_m = \frac{k_m}{\delta_m} \quad \text{Equation S12} \]
\[h_v = \frac{j \lambda}{T_c - T_{mp}} \quad \text{Equation S13} \]
\[h_c = \frac{k_c}{\delta_c} \quad \text{Equation S14} \]

Where, \(k_m, k_c \) and \(\delta_m, \delta_c \) are the thermal conductivity and thickness of membrane and the CNT layer respectively, and \(\lambda \) is the latent heat of vaporization.

Modeling surface pH under the influence of applied potential

Equation S15 was solved to estimate surface pH which was found to be 10.02

\[j = \frac{F}{\delta} \left[D_H^+ \ast \left(C_H^{+s} - C_H^{+b} \right) - D_{OH}^+ \ast K_{OW} \ast \left(\frac{1}{C_H^{+s}} - \frac{1}{C_H^{+b}} \right) \right] \quad \text{Equation S15} \]

Here, \(j \) signifies current density, \(D_H^+ \) is proton diffusion coefficient, \(C_H^{+s} \) is the surface proton concentration to be calculated, \(C_H^{+b} \) is the bulk proton concentration, \(D_{OH}^+ \) is the diffusion coefficient of the hydroxide ion, \(K_{OW} \) is the ionic product of water, \(F \) is Faraday’s constant and \(\delta \) is the boundary layer thickness.

Figure S4. Pictures of the (a) CaSO\(_4\) and (b) silicate scaled membranes under different operating conditions
Calculating EDL thickness

EDL thickness was calculated by using equation S16

\[\lambda_D = \left(\frac{e_{2N}{x}}{k_B T} \right)^{0.5} \]

Equation S16

Where, \(\lambda_D \) is the Debye length which is a measure of EDL thickness, \(\varepsilon \), \(k_B \) and \(T \) are the permittivity, Boltzmann constant and temperature respectively, \(e \) is the charge on one electron, \(n_i \) and \(z_i \) are the ionic concentration and charge of individual ions in the solution.

Figure S5. X-ray diffractogram of the (a) CaSO₄ and (b) silicate scaled membranes.

Figure S6. Phase shift versus frequency with a highly conductive metal plate (Pt-Ti) as the working electrode (black) and CNT membrane as the working electrode (red) for (a) CaSO₄ and (b) silicate solution.
Economic analysis

The proposed ECMD system has the potential to enhance membrane lifetime (by scaling mitigation), reduce membrane cleaning frequency, minimize pretreatment requirements, and reduce the volume of brine that requires disposal (by enhancing water recovery). The additional costs of this process (over conventional MD processes) are associated with fabricating the conductive CNT/PVA composite (cost of materials and fabrication), and energy requirements for the application of the electrical potential. In this section, we consider only the additional capital and operating costs incurred, and potential savings offered, by our process, without considering costs associated with membrane system design, heating of the feed solution, or pumping and cooling of the permeate stream, as these are expected to be comparable with conventional MD processes.

The cost of COOH-functionalized multi-wall CNTs used here is $0.6 g^{-1}. A single piece of membrane being coated (16 cm X 30 cm or 0.048 m\(^2\)) requires 0.2 g (200 ml of 1 g L\(^{-1}\) CNT solution), resulting in a requirement of 4.17 g CNT m\(^{-2}\), which translates to a cost of $2.5 m\(^{-2}\). A mathematical model for the design and fabrication of polymer solar cells by spray coating has been used to estimate the thermal cost of spray coating a CNT solution on to the membrane.\(^{[69]}\) With an assumed substrate speed of 0.15 m s\(^{-1}\) and a nozzle-substrate distance of 0.3 m, for a 1 g L\(^{-1}\) solution of CNT, the thermal cost of spray coating (which dominates over other electric costs) was $2 m\(^{-2}\) per layer. The total additional cost of membrane fabrication is therefore $2 + $2.5 = $4.5 m\(^{-2}\). Assuming a flux of 30 LMH and an operation time of 20 hours a day and 360 days a year, the water treated over this five-year period is 1080 m\(^3\) m\(^{-2}\). This results in an additional cost of $0.004 m\(^{-3}\).

The power required to apply 2 V\(_{AC, 1 Hz}\) was calculated using Equation 2:\(^{[70]}\)

\[
P = \frac{V^{^2}}{Z} \cos \theta \quad \text{Equation S17}
\]
where V is the voltage applied (2 V), Z is the impedance measured from EIS data and θ is the phase shift. The impedance of the system was determined to be $191 \, \Omega$ for the CaSO$_4$ solution and $182 \, \Omega$ for the silicate solution. Using Equation 2, it was determined that the power requirements were 0.02 W for both solutions (for the 0.004 m2 piece of membrane). This results in a power requirement of 5 W m$^{-2}$. Over the five-year period being considered, power requirements are 180 kWh m$^{-2}$. Assuming electricity to cost 0.12 per kWh, the resulting cost is 21.6 per m2, which for 1080 m3 of treated water results in 0.02 per m3. Thus, the total additional costs incurred are 0.004 per m3 (membrane fabrication) + 0.02 per m3 (electrical potential applied) = 0.024 per m3 water produced. In terms of savings, these costs need to be compared to the cost of anti-scalants and brine disposal, which vary depending on the physical location and the chemical composition of the water requiring treatment.

References