Supporting Information

A Hierarchical Interconnected Nanosheet Structure of Porous δ-MnO$_2$ on Graphite Paper as Cathode with a Broad Potential Window for NaNO$_3$ Aqueous Electrolyte Supercapacitors

Jun Wanga,1, Ling Tiana,1, Wenlu Xiea, Xiao Wanga, Xiao Longa, Kai Suna, Adil Emina, Dequan Liua, Yujun Fua, Qiang Chenb, Junshuai Lia*, Yali Lia* and Deyan Hea

a Key Laboratory of Special Function Materials & Structure Design (Ministry of Education), Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China

b Fujian Provincial Key Laboratory of Plasma & Magnetic Resonance, Xiamen University, Xiamen 361005, China

1 These two authors contributed equally to this work.

*Corresponding authors. E-mails: jshli@lzu.edu.cn (J. Li) and liyli@lzu.edu.cn (Y. Li).
Figure S1. SEM images of the graphite paper (GP) before (a-c) and after (d-f) electrochemical roughening in the 0.5 M K$_2$CO$_3$ aqueous solution.

Figure S2. TEM characterization of the pores in δ-MnO$_2$.

S2
Figure S3. CV curves (scan rate: 20 mV s\(^{-1}\); potential window: 0-1.4 V) of the δ-MnO\(_2\) cathode material/structure (a) in different sodium salt aqueous solutions of 1 M and (b) in the NaNO\(_3\) solutions of different concentrations.

Figure S4. Electrochemical performance of GP and electrochemically roughened GP: a) CV and b) GCD curves of GP, c) CV and d) GCD curves of roughened GP, e) rate performance and f) Nyquist plot of GP and roughened GP.
Figure S5. The IR drop plot.

Figure S6. Equivalent circuit diagram for fitting the EIS in Figure 4h.

R_{ESR}: equivalent series resistance.
R_{ct}: charge transfer resistance.
C_{CPE}: equivalent capacitance.
Z_{w}: Warburg complex resistance.
Figure S7. a) low-magnification and b) high-magnification SEM images of the δ-MnO$_2$ after cycling.

Figure S8. Cycle stability and the coulombic efficiency of δ-MnO$_2$ at different potential windows: a) 0-1.0 V and b) 0-1.3 V.
Figure S9. Electrochemical performance of activated carbon. a) CV curves at different scan rates in the potential window of −1.0-0 V, b) GCD curves of −1.0-0 V at different current densities, c) rate performance at different current densities, d) Nyquist plot (The inset exhibits the EIS at high frequency), e) cycling stability at 4 A g$^{-1}$.
<table>
<thead>
<tr>
<th>Active materials</th>
<th>Electrolytes</th>
<th>Cell voltage (V)</th>
<th>Capacitance (F g⁻¹)</th>
<th>Max Energy (Wh kg⁻¹)</th>
<th>Max Power density (kW kg⁻¹)</th>
<th>Capacitance retention</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeOOH // MnO₂</td>
<td>1M Li₂SO₄</td>
<td>0-1.85</td>
<td>51</td>
<td>24</td>
<td>2</td>
<td>85% after 2000 cycles</td>
<td>[44]</td>
</tr>
<tr>
<td>AC // Carbon nanofibers/MnO₂ and 4mM NaHCO₃</td>
<td>1M Na₂SO₄</td>
<td>0-2.0</td>
<td>57</td>
<td>36.7</td>
<td>7.7</td>
<td>92% after 10000 cycles</td>
<td>[45]</td>
</tr>
<tr>
<td>AC // MnO₂</td>
<td>0.1M K₂SO₄</td>
<td>0-2.2</td>
<td>31</td>
<td>19</td>
<td>1.2</td>
<td>—</td>
<td>[46]</td>
</tr>
<tr>
<td>Graphitic carbon sphere // MnO₂</td>
<td>1 M Na₂SO₄</td>
<td>0-2.0</td>
<td>—</td>
<td>22.1</td>
<td>5.5</td>
<td>99% after 1000 cycles</td>
<td>[47]</td>
</tr>
<tr>
<td>AC // δ-MnO₂</td>
<td>5M NaNO₃</td>
<td>0-2.4</td>
<td>48</td>
<td>38.4</td>
<td>12</td>
<td>88.6% after this 5000 cycles</td>
<td>work</td>
</tr>
</tbody>
</table>