SUPPLEMENTARY INFORMATION

Hybrid Functional Study on Small Polaron Formation and Ion Diffusion in the Cathode material Na$_2$Mn$_3$(SO$_4$)$_4$

Thien Lan Tran,†‡ Huu Duc Luong,†‡∥⊥Diem My Duong,† Nhu Thao Dinh‡ and Van An Dinh†

† Nanotechnology Program, VNU Vietnam Japan University, Luu Huu Phuoc Str., My Dinh I, Nam Tu Liem, Hanoi 10000, Vietnam.
‡ Department of Physics, Hue University of Education, Hue University, 34 Le Loi Str., Hue 49000, Vietnam.
∥ Division of Precision Science & Technology and Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
⊥ Department of Theoretical Nanotechnology, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
‡ Center of Theoretical and Computational Physics, Hue University of Education, Hue University, 34 Le Loi Str., Hue 49000, Vietnam.

*Corresponding author’s email: dv.an@vju.ac.vn
Figure S1: Magnetic moment alignment of Mn ions in configurations AFM1 (a), AFM2 (b), AFM4 (c) and AFM4 (d). Red and blue arrows denote the up and down directions.

Figure S2: DOS of the vacancy structure Na$_3$[Mn$_3$(SO$_4$)$_4$]$_4$ by GGA+U (U=3.9 eV). Fermi level is set at 0.0 eV.