Supporting Information

Responsive Single-Chain/Colloid Composite Janus Nanoparticle

Liping Yang†§, Jingjing Xu†§, Jiawei Wang†§, Fengzheng Lang†§, Bing Liu†§,
Zhenzhong Yang*‡

† State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China

‡ Institute of Polymer Science and Engineering, Department of Chemical Engineering,
Tsinghua University, Beijing 100084, China

§ University of Chinese Academy of Sciences, Beijing 100049, China
Calculation of grafting number of the polymeric chain.

Based on the VSM results as shown in Figures 1d and 3d, grafting number of a polymer chain onto the NP surface was estimated. The saturation magnetization values were measured 41.3 emu/g for the Fe$_3$O$_4$@Cl NP, 29.7 emu/g for the PMEO$_2$MA$_{94.9k}$-Fe$_3$O$_4$@Cl NP, 35.4 emu/g for the PMEO$_2$MA$_{44.1k}$-Fe$_3$O$_4$@Cl NP, 34.8 emu/g for the PMEO$_2$MA$_{9.3k}$@Fe$_3$O$_4$@Cl NP. The saturation magnetization values were measured 41.3 emu/g for the Fe$_3$O$_4$@Cl NP, 29.7 emu/g for the PMEO$_2$MA$_{94.9k}$-Fe$_3$O$_4$@Cl NP, 35.4 emu/g for the PMEO$_2$MA$_{44.1k}$-Fe$_3$O$_4$@Cl NP, 34.8 emu/g for the PMEO$_2$MA$_{9.3k}$@Fe$_3$O$_4$@Cl NP.

The weight ratio of polymer to the Fe$_3$O$_4$@Cl NP in one composite NP can be given as:

$$\frac{V_0 - V}{V} = kN$$ \hspace{1cm} \text{Equation S1}

V_0: saturation magnetization of the Fe$_3$O$_4$@Cl NP, V: saturation magnetization of the composite NP, \bar{M}_n: number average molecular weight of the grafting polymer chain, N: grafting number, k: a constant.

For the PMEO$_2$MA$_{94.9k}$-Fe$_3$O$_4$@Cl NP: $(41.3-29.7)/(29.7\times94900)=kN_1$; for the PMEO$_2MA_{44.1k}$-Fe$_3O_4$@Cl NP: $(41.3-35.4)/(35.4\times44100)=kN_2$.

The grafting number ratio was calculated as $N_1:N_2 = 1:0.92$ when the molecular weights are 94.9k and 44.1k, respectively.

Similarly, $N_1:N_3 = 1:4.9$ when the molecular weights are 94.9k and 9.3k, respectively.

Calculation of Critical Micelle Concentration (CMC).

Mass of one Fe$_3$O$_4$ NP can be approximately calculated:

$$m_{Fe_3O_4}=\rho V=\rho 4/3\pi r^3=5.18\times4/3\times3.14\times(5\times10^{-7})^3 = 2.71\times10^{-18} \text{ g}.$$

Mass of 1 mole of Fe$_3$O$_4$ NP can be approximately calculated:

$$M_{Fe_3O_4}=m_{Fe_3O_4}/N_A=2.71\times10^{-18}\times6.02\times10^{23}=1.6\times10^6 \text{ g/mol}.$$

0.024 mg/mL equivalent to: $0.024/(M_{Fe_3O_4}+\bar{M}_n)\times1000 \text{ mmol/L}=0.024/(1.6\times10^6+44100)\times1000 = 1.46\times10^{-5} \text{ mmol/L}$.

Figure S1. XRD patterns of (1) the oleic acid capped Fe$_3$O$_4$ NP and (2) the Fe$_3$O$_4$@Cl NP.

Figure S2. FT-IR spectra of (1) the oleic acid capped Fe$_3$O$_4$ NP and (2) the Fe$_3$O$_4$@Cl NP.

Figure S3. (a) GPC traces of the three representative PMEO$_2$MA with varied molecular weight: (1) 94.9k, (2) 44.1k, (3) 9.3k; (b) DLS traces of the solutions in THF.
Figure S4. FT-IR spectra of (1) the Fe$_3$O$_4$@Cl NP and (2) the PMEO$_2$MA-Fe$_3$O$_4$@Cl Janus NP.

Figure S5. TEM image of the as-synthesized PMEO$_2$MA$_{94.9k}$-Fe$_3$O$_4$@Cl Janus NP without staining.

Figure S6. DLS traces of the three composite NPs after grafting PMEO$_2$MA with varied molecular weight: (1) 94.9k, (2) 44.1k, (3) 9.3k. The measurements were performed in THF.
Figure S7. DLS traces of the composite PMEO₂MA₉.₃k@NP in water at 24 °C (1) and 27 °C (2).

Figure S8. CLSM images of: (a) the droplets in the stable emulsion; (b) the emulsion droplets grown during the de-emulsification at 30 °C; (c) the bottom phase after a further treatment using a weak magnet (0.2 T).