Supporting Information

Enhancing the Thermoelectric Performance of Polycrystalline SnSe by Decoupling Electrical and Thermal Transport through Carbon Fibre Incorporation

Guangsai Yang, †§ Lina Sang, †‡ Meng Li, † Sheik Md. Kazi Nazrul Islam, † Zengji Yue, †‖ Liqiang Liu, † Jianing Li, † David R.G. Mitchell, † Ning Ye § and Xiaolin Wang *†‖

† Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, NSW2500, Australia.

‡ Electron Microscopy Centre, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, NSW2500, Australia.

§ Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.

‖ Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies, University of Wollongong, Australia.

⊥ Faculty of Materials Engineering, Shandong Jianzhu University, Jinan, Shandong, PR China

* Corresponding authors: xiaolin@uow.edu.au
S1: Lorenz number calculation

In general, the total thermal conductivity (κ) consists of the electronic thermal conductivity (κ_e) and the lattice thermal conductivity (κ_L). The electronic part κ_e is directly proportional to the electrical conductivity σ through the Wiedemann-Franz relation, $\kappa_e = L \sigma T$, where L is the Lorentz number and its value is calculated by the single parabolic band (SPB) model. The Lorenz number can be given as:

$$L = \left(\frac{k_B}{e} \right) \frac{(r + 7/2) F_{r+5/2}(\eta)}{(r + 3/2) F_{r+3/2}(\eta)} \left(\frac{(r + 5/2) F_{r+3/2}(\eta)}{(r + 3/2) F_{r+1/2}(\eta)} \right)^2$$ \hspace{1cm} (1)

For the Lorenz number calculation, we should get reduced Fermi energy η firstly; the calculation of η can be derived from the measured Seebeck coefficients by using the following relationship:

$$S = \pm \frac{k_B}{e} \left(\frac{(r + 5/2) F_{r+3/2}(\eta)}{(r + 3/2) F_{r+1/2}(\eta)} - \eta \right)$$ \hspace{1cm} (2)

Where $F_n(\eta)$ is the n^{th} order Fermi integral,

$$F_n(\eta) = \int_{0}^{e} \frac{\chi^n}{1 + e^{\chi - \eta}} d\chi$$ \hspace{1cm} (3)

Where e is the electron charge, k_B is the Boltzmann constant, h is the Planck constant, and r is the scattering factor. Assuming that the carrier scattering mechanism near room temperature is dominated by acoustic phonon scattering r can be taken as -1/2. The Lorenz number can be obtained by combining Equations (1), (2), and (3).
S2. Anisotropic thermoelectric properties of SnSe/CF samples.

Figure S1. Thermoelectric properties of SnSe/CF03 measured along parallel (∥ solid symbol) and perpendicular (⊥ open symbol) to the SPS pressure direction: (a) Seebeck coefficient; (b) electrical conductivity; (c) thermal conductivity; (d) zT.
S3. Heat capacity and thermal diffusivity

Figure S2. Temperature dependence of (a) the specific heat capacity (C_p) and (b) the thermal diffusivity (D) of SnSe and SnSe/CF samples.

S4. Hall carrier density and carrier mobility

Figure S3. Carrier density and carrier mobility as functions of the CF content at 330 K.