Supporting Information

Growth of Large-Area Homogeneous Monolayer Transition Metal Disulfides via a Molten Liquid Intermediate Process

Hang Liu†, Guopeng Qi†, Caisheng Tang†, Maolin Chen‡, Yang Chen†, Zhiwen Shu†, Haiyan Xiang‡, Yuanyuan Jin†, Shanshan Wang||, Huimin Li†, Miray Ouzounian‡, Travis shihao Hu‡, Huigao Duan‡, Shisheng Li‡,*, Zheng Han‡,*, Song Liu‡,*

†Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

‡Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, P. R. China

§State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China

||Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, P. R. China

¶International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan

§Department of Mechanical Engineering, California State University, Los Angeles, CA 90032,
USA

*Corresponding authors: S.L. (liusong@hnu.edu.cn), Z.H. (zhenghan1985@gmail.com),
S.S.L (shishengli1108@gmail.com)
Contents

Figure S1. Contact angle between Na₂WO₄ solution and substrate.

Figure S2. AFM images of the solid Na₂WO₄.

Figure S3. Schematic illustration of CVD setup.

Figure S4. Optical image of 4 random areas.

Figure S5. Photograph of the SiO₂/Si substrate by using conventional CVD and molten liquid intermediate CVD.

Figure S6. SEM image of the WS₂.

Figure S7. TEM characterization of WS₂.

Figure S8. XPS and EDS of the WS₂.

Figure S9. Higher precursor concentration for WS₂ growth.

Figure S10. Optical image of WS₂ from Different location in a same substrate.

Figure S11. Large-area uniform monolayer MoS₂ single crystals and film.

Figure S12. TEM characterization of MoS₂.

Figure S13. Large-area uniform MoS₂/WS₂ vertical heterostructure.

Figure S14. Electrical performances of WS₂ and MoS₂.

Table S1. Reported on/off ratio, mobility and contact electrode from different previous reports and this work.
Figure S1. Comparison of the contact angles between the substrate and precursor solution (a) before and (b) after O\textsubscript{2} plasma treatment. Optical image after growth of WS\textsubscript{2} (c) without and (d) with O\textsubscript{2} plasma treatment. Scale bar: 20 μm.

Figure S2. AFM image of solid Na\textsubscript{2}WO\textsubscript{4} precursor after spin-coating. Scale bar: 5 μm.

Figure S3. Schematic illustration of the CVD setup.
Figure S4. (a-d) Optical image of 4 random areas in the 2-inch wafer scale SiO$_2$/Si show a uniform color without any wrinkles.

Figure S5. Photograph of the SiO$_2$/Si substrates using different growth method: (a) conventional CVD using solid WO$_3$ as precursor displays an obvious concentration gradient; (b) molten liquid intermediate CVD shows a uniform color contrast.

Figure S6. SEM image of a typical single crystal WS$_2$.
Figure S7. (a) High-resolution TEM image of WS$_2$. (b) Selective area electron diffraction (SAED) pattern image.

Figure S8. XPS of (a) Na 1S, (b) S 2p, (c) W 5p and 4f core-level binding energies in as-grown WS$_2$. (d) Energy dispersive spectrometer (EDS) of WS$_2$ after transferred to the TEM grid.

Figure S9. As-grown WS$_2$ film synthesized using (a) 70 mM and (b) 90 mM concentrations of Na$_2$WO$_4$ precursor, respectively. Scale bar: 20 μm.
Figure S10. Optical image of WS$_2$ from different location on a same substrate showing a large-area uniformity.

Figure S11. (a) Large-area uniform as-grown monolayer MoS$_2$ single crystals. (b) Large-area continuous monolayer MoS$_2$ film. (c, d) Raman and PL spectrum of typical MoS$_2$ samples in (a, b), respectively.

Figure S12. High-resolution TEM image of MoS$_2$, inset is the SAED image.
Figure S13. Large-area MoS$_2$/WS$_2$ vertical bilayer heterostructures.

Figure S14. (a) Transfer curves of 20 different WS$_2$ FET.
Table S1. Statistics and comparison off/off ratio, mobility and performance of different WS$_2$ based FET devices

<table>
<thead>
<tr>
<th>on/off ratio</th>
<th>Mobility (cm2V$^{-1}$s$^{-1}$)</th>
<th>Electrode</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^5</td>
<td>0.01</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>10^4-10^6</td>
<td>0.04-0.63</td>
<td>Cr/Au</td>
<td>2</td>
</tr>
<tr>
<td>N/A</td>
<td>20</td>
<td>Ti/Au</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>0.005-0.01</td>
<td>Cr/Au</td>
<td>4</td>
</tr>
<tr>
<td>10^2</td>
<td>0.46</td>
<td>Ti/Au</td>
<td>5</td>
</tr>
<tr>
<td>10^3-10^4</td>
<td>0.3-1.02</td>
<td>Ti/Au</td>
<td>this work</td>
</tr>
</tbody>
</table>

References

(5) Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y.; Song, X.; Hwang,