Supporting Information

Solubility Behavior and Thermodynamic Modelling of Inosine (Form β) in Four Cosolvency Systems at $T = (278.15$ to $323.15)$ K

Yuli Shi1,2,*, Haojian Zhang1, Xiaodong Wang2

1 School of Materials and Chemical Engineering, Ningbo University of Technology, Fenghua Road 201, Ningbo 315016, Zhejiang, P.R. China

2 Chemical and Materials Engineering, School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, Scotland, United Kingdom

Corresponding author. Phone: + 86 574 88918259; Fax: + 86 574 88918259.

E-mail address: yuli_shi@tju.edu.cn
Fig. S1. Chemical structure of inosine.
Fig. S2. Schematic diagram of experimental apparatus: I, smart thermostatic water bath; II, mercury-in-glass thermometer; III, magnetic stirrer; IV, stirrer controller; V, jacketed glass vessel; VI, sampling port; VII, condenser.
Fig. S3. XPRD patterns of inosine (form β): (a) raw material; (b) crystallized in ethanol; (c) crystallized in n-propanol; (d) crystallized in isopropanol; (e) crystallized in PG; (f) crystallized in DMF; (g) crystallized in DMF (1) + ethanol (2) mixture; (h) crystallized in DMF (1) + n-propanol (2) mixture; (i) crystallized in DMF (1) + isopropanol (2) mixture; (j) crystallized in DMF (1) + PG (2) mixture.