Supporting Information

Robust Topological States in Bi$_2$Se$_3$ Against Surface Oxidation

Jiali Yang1,2, Baobing Zheng2,3, Zhongjia Chen2,4, Wangping Xu1,2, Rui Wang*,1,2 and Hu Xu*,2,5

1Institute for Structure and Function & Department of Physics, Chongqing University, Chongqing 400044, P. R. China.
2Department of Physics and Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
3College of Physics and Optoelectronic Technology, Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721016, P. R. China.
4Department of Physics, South China University of Technology, Guangzhou 510640, P. R. China.
5Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
Figure S1. Top and side views of (a) one O atom oxidized ($O^{\frac{1}{2}}_{Se} - 2*2$ supercell), (b) two O atoms oxidized ($O^{\frac{2}{2}}_{Se} - 2*2$ supercell), (c) three O atoms oxidized ($O^{\frac{3}{2}}_{Se} - 2*2$ supercell), and four O atoms oxidized ($O^{\frac{4}{2}}_{Se} - 2*2$ supercell) on Se-terminated Bi$_2$Se$_3$ slab with (2×2) supercell surface. The corresponding adsorption energies for per O atom are also listed.
Figure S2. Electronic band structures of surface oxidization for Se-terminated Bi$_2$Se$_3$ slabs with (2×2) supercell surface: (a) O_{3e}^1-2*2supercell, (b) O_{3e}^2-2*2supercell, (c) O_{3e}^3-2*2supercell, and (d) O_{3e}^4-2*2supercell.
Figure S3. Top and side views of (a) pristine, (b) one O atom oxidized \(\text{O}^1_{\text{Bi}} \), and (c) two O atoms oxidized \(\text{O}^2_{\text{Bi}} \) on Bi-terminated Bi\(_2\)Se\(_3\) slab with \((1\times1)\) cell surface. The adsorption energies for per O atom of \(\text{O}^1_{\text{Bi}} \) and \(\text{O}^2_{\text{Bi}} \) are -2.449 eV and -1.489 eV, respectively.
Figure S4. Structure diagrams of oxidized Bi$_2$Se$_3$ slab with different oxygen concentrations and oxidation depths along the normal direction of the surface: (a) Bi$_{20}$Se$_{30}$O$_{4}$, (b) Bi$_{20}$Se$_{30}$O$_{6}$, (c) Bi$_{20}$Se$_{30}$O$_{8}$, and (d) Bi$_{20}$Se$_{30}$O$_{10}$.