Supporting Information

Ultrahigh-Sensitive Finlike Double-sided E-skin for Force Direction Detection

Xue-Feng Zhao,†‡ Cheng-Zhou Hang,† Xiao-Hong Wen,† Meng-Yang Liu,† Hao Zhang,§ Fan Yang,† Ru-Guang Ma,‡ Jia-Cheng Wang,*‡ David Wei Zhang,† and Hong-Liang Lu*,†

†State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
‡State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
§Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China

*E-mail: jiacheng.wang@mail.sic.ac.cn; honglianglu@fudan.edu.cn
Figure S1. (a) Macroscopic photo of the CNTs sponge. (b) Schematic diagram of the CNTs sponge.

Figure S2. Macroscopic photographs of the CNTs sponge before (a) and after (b) compression.
Figure S3. Raman spectra of the CNTs sponge.

Figure S4. (a), (b) Single interdigital electrode parameters and macroscopic photo. (c), (d) The 4×4 elements array interdigital electrode parameters and macroscopic photo.
Figure S5. The macroscopic photos of the e-skin assembly process. (a) The interdigital electrode was attached to PDMS. (b) Carbon nanotube sponge was coated on the interdigital electrode, and then coated with PDMS.

Figure S6. The sensitive retention as a function of loading-unloading cycles. The sensitivity remains greater than 90% of the original value even after 5,000 cycles.
Figure S7. I-V measurements for forward and backward sweepings of voltages from -1 to 1 V at an external pressure of 6 kPa.

Figure S8. Physical picture of the wireless detection system.
Table S1. Performance comparison of the current pressure sensor with previously reported pressure sensors in sensitivity, linearity, and testing range.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Sensitivity (kPa$^{-1}$)</th>
<th>Linearity (kPa)</th>
<th>Identification Range (kPa)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti$_3$C$_2$</td>
<td>180.1</td>
<td>0-5</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>MXene-sponge network</td>
<td>442</td>
<td>5.37-18.56</td>
<td>20</td>
<td>31</td>
</tr>
<tr>
<td>Graphene</td>
<td>25.1</td>
<td>0-2.6</td>
<td>40</td>
<td>19</td>
</tr>
<tr>
<td>Graphene sheet</td>
<td>1.2</td>
<td>0-25</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Carbon block-sponge</td>
<td>0.068</td>
<td>0.091-16.4</td>
<td>16.4</td>
<td>39</td>
</tr>
<tr>
<td>Graphene-Silicon</td>
<td>15.9</td>
<td>0-60</td>
<td>60</td>
<td>41</td>
</tr>
<tr>
<td>polypyrrole/PDMS micropyramid</td>
<td>1907.2</td>
<td>0-0.1</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>Ag NW/PDMS rough film</td>
<td>9.8×104</td>
<td>0-0.2</td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>4015.8</td>
<td>0-4</td>
<td>100</td>
<td>Our work</td>
</tr>
<tr>
<td>CNTs sponge</td>
<td>878.2</td>
<td>4-20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>