Supporting Information

Encapsulation Using Plant Proteins: Thermodynamics and Kinetics of Wetting for Simple Zein Coacervates

AUTHOR NAMES

Xiufeng Li, † Philipp Erni, ‡ J. van der Gucht, † R. de Vries* †

AUTHOR ADDRESS

† Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, The Netherlands

‡ Firmenich SA, Materials Science Department, Corporate Research Division, Meyrin 2, Genève, Switzerland

*Corresponding author: renko.devries@wur.nl
Figure S1. Sample vials for determining the phase diagram. The ϕ_{PG} and pH are indicated in the figure, from left to right (10, 30, 50, 55, 60, 65, 70, 80%), from top to bottom (pH 10.0, 8.0, 5.3, 2.6).
Figure S2. Microscopic images for determining the phase diagram. The \(\varphi_{PG} \) and pH are indicated in the figure. The scale bar is 200\(\mu m \).

Figure S3. Coacervate filament thinning dynamics in excess phase at pH 7, measured neck width as a function of time. Different panels are replicates.
Figure S4. pH 7 coacervate filament thinning dynamics in limonene, measured neck width as a function of time. Different panels are replicates.

<table>
<thead>
<tr>
<th>EtOH</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
</tr>
</thead>
</table>

![Image of coacervate filaments with varying EtOH concentrations]
Figure S5. Sample vials of zein in ETOH (ethanol)/water binary solvents at pH 8. Protein concentration was kept in constant for all vials. The φ_{ETOH} is indicated in the figure, from left to right (20, 30, 40, 50, 60, 70, 80%).