Supporting Information for

Thermostable Ion Gels for High-Temperature Operation of Electrolyte-Gated Transistors

Kyung Gook Cho†a, Young Kyung Cho†a, Jeong Hui Kima, Hye-young Yoa, Kihyon Hong*b, and Keun Hyung Lee*a

aDepartment of Chemistry and Chemical Engineering
Inha University
Incheon 22212
Republic of Korea
E-mail: kh.lee@inha.ac.kr

bDepartment of Materials Science and Engineering
Chungnam National University (CNU)
Daejeon 34134
Republic of Korea
E-mail: khong@cnu.ac.kr
Figure S1. TGA data of PA6 ion gels containing polymer fractions of 10–50 wt%.

Figure S2. Specific capacitance and ionic conductivity of PA6 ion gels containing polymer fractions of 10–50 wt%. Capacitance data were obtained from the imaginary impedance at 1 Hz and the ionic conductivity values were calculated from the high frequency plateau of the real part impedance.
Figure S3. Elastic modulus versus ionic conductivity of 20 wt% PA gels; results for previously reported ion gels having inorganic, chemical, physical, and double networks are shown for comparison.

Figure S4. I_D versus V_G characteristics of P3HT EGTs using the 10 wt% PA6 gel dielectric in the saturation regime.
Figure S5 a) Quasi-static I_D versus V_G characteristics in the linear regime of 10 wt% PA 6 gel-gated EGTs and b) the corresponding changes in P3HT mobility over a period of 10 days.

Figure S6. Representative I_D versus V_G transfer characteristics in the (a, d) linear and (b, e) saturation regimes. (c, f) Representative I_D–V_D output characteristics of the P3HT EGTs using PA6/6 and 6/12 gels as a gate dielectric layer.
Figure S7. (a) On current, off current, and on/off ratio and (b) carrier mobility data for P3HT EGTs gated with PA6 ion gels containing different polymer fractions of 10–50 wt%.

Figure S8. Normalized mobility of P3HT semiconductor after annealing at 150 °C for different periods of time. 10 wt% PA6 gel and SWCNT gate electrode were applied after thermal annealing of the P3HT.