Supporting Information

Investigating the nucleation kinetics of calcium carbonate using a zero-water-loss microfluidic chip

Zongwei Zhang a,†, Yuan Gao a,†, Fiona C. Meldrum b,*, Lingling Shui c, Zhijun Wang d, Shunbo Li a,* and Gang Li a,*

a. Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronics Engineering, Chongqing University, Chongqing, China
b. School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
c. Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Normal University, Guangzhou 510006, China
d. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China

† These authors contributed equally to this work

* Corresponding Authors:

Shunbo Li (shunbo.li@cqu.edu.cn), Gang Li (gang.li@cqu.edu.cn) and Fiona C. Meldrum (F.Meldrum@leeds.ac.uk)
Figure S1. Raman spectrum of crystals formed in microfluidic devices with initial concentrations of $[\text{Ca}^{2+}] = [\text{CO}_3^{2-}] = 3 \text{ mM}$.

Figure S2. Optical micrographs of crystals formed in the microdroplets from beginning (a) and after growth (b). The calcium concentration is 3 mM with magnesium ($[\text{Ca}^{2+}]/[\text{Mg}^{2+}] = 1:4$). The crystal looks like rod shape in both pictures.