Supporting Information

Gradient vertical-channels within aerogels based on N-doped graphene meshes toward efficient and salt-resistant solar evaporation

Xiangyu Meng,† Jianhui Yang,† Seeram Ramakrishna,‡ Yueming Sun,† and Yunqian Dai*, †

†School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China
‡Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore

*Address corresponding to: daiy@seu.edu.cn

Total number of pages (including cover page): 21
Total number of Figures: 14
Total number of Tables: 2
Figure S1. The photographs of ring-like (A) 3-N-RGO, (B) 5-N-RGO, and (C) 7-N-RGO hydrogels.
Figure S2. The SEM image of honeycomb-like 5-N-RGO fabricated with 0.5 mol·L⁻¹ NH₄OH.
Figure S3. The SEM image of 5-N-RGO with high magnification, with the arrows showing the N-RGO bridges between the neighboring rings.
Supplementary Note

Note S1. The calculation of porosity of ring-like 5-N-RGO.

The porosity (P) of our ring-like 5-N-RGO was calculated from the following equation S1:1

$$P = \frac{V_a - m}{V_a} \times 100\% = (1 - \frac{\rho_a}{\rho_s}) \times 100\%$$

where V_a is the apparent volume of cylindrical N-RGO aerogel; m is the mass of N-RGO aerogel; ρ_s is the skeletal density of the solid constituent in aerogel, which is about 2 g·cm-3;1,2 ρ_a is the apparent density of N-RGO aerogel (0.24 g·cm-3). Because the aerogel was weighted in air, the weight of air was automatically eliminated.
Figure S4. The Raman spectrum of pristine GO precursor with two broadening characteristic peaks at ~1352 and ~1595 cm⁻¹.
Figure S5. Full XPS spectrum of pristine GO.
Figure S6. UV-vis-NIR spectrum of ring-like 5-N-RGO aerogel.
Table S1. Comparison of the photothermal conversion efficiency

<table>
<thead>
<tr>
<th>Materials</th>
<th>Photothermal conversion efficiency (%)</th>
<th>Light intensity (kW·m⁻²)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual ring-like 5-N-RGO</td>
<td>74.8</td>
<td>2</td>
<td>This work</td>
</tr>
<tr>
<td>Honeycomb-like 5-N-RGO</td>
<td>49.3</td>
<td>2</td>
<td>This work</td>
</tr>
<tr>
<td>Oxygen plasma treated graphene</td>
<td>53.5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Wood/Graphene oxide</td>
<td>22.5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Hierarchical graphene</td>
<td>69.2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Carbon nanofiber/Carbon nanotube</td>
<td>29.8</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Wood/Carbon nanotubes</td>
<td>67.0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Activated carbon fiber cloth</td>
<td>73.3</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Data were given or calculated in the respective references.
Table S2. The thermal conductivity of ring-like N-RGO aerogels fabricated with different GO concentration

<table>
<thead>
<tr>
<th>Materials</th>
<th>Thermal conductivity (W·m⁻¹·K⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-N-RGO aerogel</td>
<td>0.29</td>
</tr>
<tr>
<td>5-N-RGO aerogel</td>
<td>0.26</td>
</tr>
<tr>
<td>7-N-RGO aerogel</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Figure S7. The infrared images of ring-like (A) 3-N-RGO and (B) 7-N-RGO aerogels.
Figure S8. The contact angles of water on the top center of ring-like (A) 3-N-RGO and (B) 7-N-RGO aerogels.
Figure S9. The infrared image of ring-like 5-N-RGO aerogel during water evaporation. The white circles highlight the boundary lines of different parts.
Supplementary Note

Note S2. The calculation of net energy gained from environment.

The net energy (E_s) gained from environment can be estimated by the following equation S2:8–10

$$E_s = -A_{\text{top}} \cdot e \cdot \sigma \cdot (T_{\text{top}}^4 - T_s^4) - A_{\text{side}} \cdot e \cdot \sigma \cdot (T_{\text{side}}^4 - T_s^4) - A_{\text{top}} \cdot h \cdot (T_{\text{top}} - T_s) - A_{\text{side}} \cdot h \cdot (T_{\text{side}} - T_s)$$ \hspace{1cm} (2)

where A_{top} is the top surface area, T_{top} is the weighted average temperature of top surface, A_{side} is the side wall surface area, T_{side} is the average temperature of side surface, T_s is the surrounding temperature, e is emissivity of the graphene absorber, σ is the Stefan–Boltzmann constant, and h is the average convection heat transfer coefficient.

As illustrated in Figure S9, the exposed side surface has a lower temperature than that of surrounding, and thus can gain energy from the surrounding.8–10 This net energy of N-RGO evaporator gained from environment (21.10 mW, calculated from the above equation S2) could significantly improve the vapor generation of N-RGO aerogel.
Figure S10. The dependence of evaporation rate of ring-like 5-N-RGO aerogel on light-intensity.
Figure S11. The optical images of (A) salt-free surface of ring-like 5-N-RGO aerogel and (B) salt-blockage surface of conventional honeycomb-like aerogel. The black circles highlight the top surface of aerogels.
Figure S12. The SEM images of ring-like 5-N-RGO aerogels after immersing in (A) strong acidic solution, (B) strong alkaline solution, and (C) polar solution for 24 h.
Figure S13. The optical images of ring-like 5-N-RGO aerogels (A) before and (B) after strong water steaming for 2 h.
Figure S14. The compressive stress-strain curve of ring-like 5-N-RGO.
References

