Supporting Information

600 nm-irradiation-induced Efficient Photocatalytic CO₂ Reduction by Ultrathin Layered Double Hydroxide Nanosheets

Sha Bai, ‡a Zelin Wang, ‡a Ling Tan, a Geoffrey I.N. Waterhouse, b Yufei Zhao,* Yu-Fei Song**

aState Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China.

bSchool of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand.

‡Sha Bai and Zelin Wang contributed equally
Experimental

Materials: Mg(NO$_3$)$_2$·6H$_2$O, Co(NO$_3$)$_2$·6H$_2$O, Ni(NO$_3$)$_2$·6H$_2$O, Zn(NO$_3$)$_2$·6H$_2$O, Al(NO$_3$)$_3$·9H$_2$O, CoCl$_2$·6H$_2$O, AlCl$_3$·6H$_2$O, NaOH, [Ru(bpy)$_3$]Cl$_2$·6H$_2$O (bpy = 2’2’-bipyridine), triethanolamine (TEOA) and acetonitrile (MeCN) were purchased from Sigma-Aldrich Co. and were used without any further purification. Deionized water was used in all experiments.

Synthesis of ultrathin MAl-LDH (M = Mg, Co, Ni, Zn; denoted as u-MAl-LDH):
The u-MAl-LDH photocatalysts were synthesized using a traditional titration method1 with a slight modification. For the synthesis of u-MgAl-LDH, two solutions were prepared.

Solution A contained Mg(NO$_3$)$_2$·6H$_2$O (0.1718 g, 0.67 mmol) and Al(NO$_3$)$_3$·9H$_2$O (0.1238 g, 0.33 mmol) in 20 mL of decarbonated water.

Solution B contained NaOH (1.000 g, 25 mmol) in 100 mL of decarbonate water.

Solution A and Solution B were added dropwise into a 20 mL of decarbonated water under magnetic stirring at 80 °C, and the resulting reaction mixture maintained at a pH value of ca. 9. After 15 min, the product was collected by centrifugation, washed with decarbonated water (3 × 20 mL), and kept in the wet state for subsequent use.

Similarly, u-CoAl-LDH, u-NiAl-LDH, u-ZnAl-LDH were also prepared by replacing the Mg(NO$_3$)$_2$·6H$_2$O with the corresponding Co(NO$_3$)$_2$·6H$_2$O, Ni(NO$_3$)$_2$·6H$_2$O, Zn(NO$_3$)$_2$·6H$_2$O, respectively). Note that for the synthesis of u-ZnAl-LDH, the pH of the reaction mixture was kept at ~7.

Synthesis of NO$_3^-$ intercalated bulk Co$_2$Al-LDH (denoted as b-CoAl-LDH): The b-
CoAl-LDH was prepared by the hydrothermal method. Typically, CoCl$_2$·6H$_2$O (1.9034 g, 8 mmol), AlCl$_3$·6H$_2$O (0.9657 g, 4 mmol) and urea (1.6814 g, 28 mmol) were dissolved in 1L of deionized water. Then, the solution was heated to reflux and kept stirring for 2 d. The resulting product, CO$_3^{2-}$-intercalated Co$_2$Al-LDH (denoted as b-CoAl-CO$_3$-LDH), was collected by filtration, washed with deionized water, and dried at 60°C.

The NO$_3^-$-intercalated CoAl-LDH was subsequently synthesized from b-CoAl-CO$_3$-LDH according to the method described by Iyi et al. In a three-neck flask, 0.5 g of b-CoAl-CO$_3$-LDH was treated with 500 mL of an aqueous solution containing NaNO$_3$ (79.49 g, 0.75 mol) and 65% HNO$_3$ (0.0025 mol, 165 μL). The dispersion was stirred continuously for 24 h at room temperature under a nitrogen flow to allow exchange of the interlayer carbonate ions in b-CoAl-CO$_3$-LDH with nitrate ions. After 24 h, the b-CoAl-NO$_3$-LDH product was collected by filtration, washed repeatedly with water, and finally vacuum dried.
Figure S1. (A-C) The calculated total density of states (TDOS) and partial density of states (PDOS) plots for u-MgAl-LDH; u-ZnAl-LDH and u-NiAl-LDH (the bandgap values are indicated); (D) Models showing the most stable adsorption configurations of CO$_2$ and H$_2$O on u-CoAl-LDH.

Figure S2. UV-vis absorbance spectrum of u-CoAl-LDH.
Figure S3. (A) XRD patterns for the various u-MAI-LDH photocatalysts. (B) FT-IR spectra for the various u-MAI-LDH photocatalysts.

X-ray powder diffraction (XRD) patterns for the various u-MAI-LDH photocatalysts are displayed in Figure S3A. All samples showed characteristic (00l) diffraction peaks associated with LDHs. The (003) diffraction peak at 10.91° seen for all the samples corresponds to a layer spacing ~8.11 Å. The FT-IR spectra (Figure S3B) for the various u-MAI-LDH photocatalysts show a broad band at 3430 cm\(^{-1}\), associated with O-H stretching vibrations (of OH groups in the Brucite-like LDH sheets and interlayer water molecules). The small peak at 1633 cm\(^{-1}\) is assigned to a bending vibration of interlayer water. The strong band at 1380 cm\(^{-1}\) signifies the vibrations of NO\(_3^-\) (\(\nu_3\) mode of the nitrate ion). The feature at 450 cm\(^{-1}\) is an Al-O vibration.
Figure S4 TEM images of (A) u-MgAl-LDH; (B) u-ZnAl-LDH and (C) u-NiAl-LDH.

Figure S5. EPR spectrum of the u-CoAl-LDH powder.
Figure S6. (A) XRD patterns of b-CoAl-CO$_3$-LDH and b-CoAl-LDH; SEM images of (B) b-CoAl-CO$_3$-LDH and (C) b-CoAl-LDH.

Figure S7. (A) Derivative-normalized Co K-edge X-ray absorption near-edge structure (XANES) for u-CoAl-LDH and b-CoAl-LDH. (B) magnitude of weighted FT of Co K-edge extended X-ray absorption fine-structure (EXAFS) and EXAFS curve-fitting results for u-CoAl-LDH, b-CoAl-LDH and b-CoAl-CO$_3$-LDH.
Table S1. Local structure parameters around Co in b-CoAl-LDH and u-CoAl-LDH estimated by EXAFS analysis

<table>
<thead>
<tr>
<th>Sample</th>
<th>Shell</th>
<th>N<sup>a</sup></th>
<th>R[Å]<sup>b</sup></th>
<th>ΔE₀(eV)<sup>c</sup></th>
<th>R-factor</th>
<th>σ<sup>2</sup>(10<sup>-3</sup> Å<sup>2</sup>)<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>b-CoAl-CO₃-LDH</td>
<td>Co-O</td>
<td>6.0</td>
<td>2.08</td>
<td>-0.39</td>
<td></td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>Co-Co</td>
<td>3.0</td>
<td>3.12</td>
<td>3.07</td>
<td>0.0064</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-Al</td>
<td>3.0</td>
<td>3.16</td>
<td>3.44</td>
<td></td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>Co-O</td>
<td>5.6</td>
<td>2.08</td>
<td>-1.79</td>
<td></td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Co-Co</td>
<td>3.0</td>
<td>3.10</td>
<td>-0.19</td>
<td>0.0083</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Co-Al</td>
<td>1.9</td>
<td>3.15</td>
<td>-0.75</td>
<td></td>
<td>8.3</td>
</tr>
<tr>
<td>u-CoAl-LDH</td>
<td>Co-O</td>
<td>5.0</td>
<td>2.08</td>
<td>-1.26</td>
<td></td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Co-Co</td>
<td>3.0</td>
<td>3.11</td>
<td>-0.068</td>
<td>0.0046</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td>Co-Al</td>
<td>1.4</td>
<td>3.15</td>
<td>0.081</td>
<td></td>
<td>6.9</td>
</tr>
</tbody>
</table>

^aN = coordination number; ^bR = distance between absorber and backscatter atoms; ^cΔE₀: the inner potential correction. ^dσ² = Debye-Waller factor; S₀², 1.0, was obtained from the experimental EXAFS fit of b-CoAl-CO₃-LDH reference.

Figure S8 Schematic illustration of the layered structure of CoAl-LDH.
Calculation of the Oxygen and Metal Vacancies in u-CoAl-LDH

Figure S8 shows a schematic illustration of layered structure of CoAl-LDH (without interlayer anions). The empirical molecular formula of CoAl-LDH is Co₆Al₃H₁₈O₁₈. The surface area of this cell is 0.9 nm × 0.9 nm × sin 60° = 0.701 nm². Thus, the volume of the LDH can be calculated as the product of surface area of the cell (in nm²) and the thickness (nm). Here, thicknesses were measured by AFM, and determined to be ~ 3.7 nm. The volume is thus 0.701 nm² × 3.7 nm = 2.594 nm³. The corresponding oxygen number in the CoAl-monolayer model is 18, and the total number of the metal atoms (Co and Al) is 9.

The EXAFS results for u-CoAl-LDH determine that the Co coordination number of the first Co-O shell is 5.0, compared with the ideal LDH (b-CoAl-CO₃-LDH) with coordination number of 6.0. The oxygen vacancy defect concentration in the Co-O shell for u-CoAl-LDH is thus (6-5.0)/6 = 0.1667 = 16.67%. Therefore, in the whole model, the defect intensity of oxygen vacancy can be inferred as follows:

Oxygen vacancies density (nm⁻³) in u-CoAl-LDH = defect concentration × the total oxygen number in the model per nm³ in the model = 0.1667*18/(2.594 nm³) = 1.16 nm⁻³.

The above equation can be also extend to calculate the metal vacancies density (in nm⁻³) in u-CoAl-LDH. By EXAFS, the metal vacancy defect concentration was (6.00-4.4)/6 = 0.227 = 22.7%.

Thus for u-CoAl-LDH, the metal vacancy density (in nm⁻³) was defect concentration × the total metal atoms per nm³ in the model = 0.227 × 9/(2.594 nm³) = 0.93 nm⁻³.
Figure S9. The irradiance spectrum of the Xe light source with 400 nm cutoff filter used in the photocatalytic experiments (400-800 nm).
Figure S10. The production rates of CO and H\textsubscript{2} during photocatalytic tests on u-CoAl-LDH and b-CoAl-LDH under irradiation above 400 nm (\(\lambda > 400\) nm) with 10 mg catalyst.

In order to evaluate the advantages of using ultrathin LDH materials in the photocatalytic reduction of CO\textsubscript{2}, a performance comparison was made between u-CoAl-LDH (10 mg) and b-CoAl-LDH (10 mg) under visible light (400 \(\leq \lambda \leq 800\) nm). The u-CoAl-LDH photocatalyst had a CO production rate of 2.52 mmol g-1 h-1 under the applied testing conditions and a high selectivity to CO (60.93%). The b-CoAl-LDH photocatalyst afforded a lower rate to CO production (1.67 mmol g-1 h-1), and a lower CO selectivity of 47.71%. Results suggested that the defects contained within the LDH nanosheets were highly beneficial for enhancing CO\textsubscript{2} conversion and tuning the selectivity to CO.5
Figure S11. 1H-NMR spectra of the reaction system following CO$_2$ photoreduction tests under visible light ($400 \leq \lambda \leq 800$ nm). The catalyst was 10 mg of u-CoAl-LDH; 1H-NMR spectra for TEOA, Ru(bpy)$_3$Cl$_2$·H$_2$O and CH$_3$CN are also provided for comparison.

Figure S12. The production rates of CO and H$_2$ on u-CoAl-LDH (10 mg) over 6 successive photocatalytic tests.

In order to investigate the stability of u-CoAl-LDH as a photocatalyst for CO$_2$ reduction, a series of successive photocatalytic tests were performed. At the end of each test, the catalyst was recovered from the reaction medium, washed with water, and then reused for photocatalytic CO$_2$ reduction. As shown in Figure S12, no significant deactivation or change in selectivity was observed over six successive sets of test, confirming that u-CoAl-LDH possessed excellent stability.
Figure S13. A) XRD patterns of u-CoAl-LDH samples before and after photocatalytic CO\textsubscript{2} reduction tests. B) TEM images of the u-CoAl-LDH after the photocatalytic CO\textsubscript{2} reduction test.

XRD was used to characterize u-CoAl-LDH before and after photocatalytic CO\textsubscript{2} reduction tests (Figure S13). No noticeable differences were seen in the XRD patterns before and after the tests, indicating that the LDH structure of u-CoAl-LDH was stable during the CO\textsubscript{2} reduction tests. TEM analysis confirmed that u-CoAl-LDH retained its ultrathin morphology and was stable against aggregation during the tests (Figure S13B). These results further indicated that u-CoAl-LDH was a very stable photocatalyst for CO\textsubscript{2} reduction.
Figure S14. The production rates of CO and H₂ in CO₂PR under visible light (400-800 nm) using different amounts of u-CoAl-LDH.
Table S2. The performance comparison of photocatalytic CO\(_2\) reduction over various photocatalysts.

<table>
<thead>
<tr>
<th></th>
<th>Catalyst</th>
<th>Photosensitizer</th>
<th>Sacrificial agent</th>
<th>Solvent</th>
<th>Light source</th>
<th>CO(_2) Conversion (mmol·g(^{-1})·h(^{-1}))</th>
<th>Major product selectivity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CoAl-LDH nanosheets</td>
<td>-</td>
<td>-</td>
<td>H(_2)O</td>
<td>500 W Xe</td>
<td>(4.67\times10^{-3})</td>
<td>CH(_4): 77%</td>
<td>(J. \text{ Mater. Chem. A, } 2018, 6, 8366)</td>
</tr>
<tr>
<td>2</td>
<td>Co-ZIF-9</td>
<td>[Ru(bpy)(_3)]Cl(_2)·6H(_2)O</td>
<td>TEOA</td>
<td>MeCN-H(_2)O (4:1 v/v)</td>
<td>Xe lamp ((\lambda \geq 420 \text{ nm}))</td>
<td>(0.08) (mmol·h(^{-1}))</td>
<td>CO: 58%</td>
<td>(\text{Angew. Chem. Int. Ed., } 2014, 53, 1034)</td>
</tr>
<tr>
<td>3</td>
<td>Co/C</td>
<td>[Ru(bpy)(_3)]Cl(_2)·6H(_2)O</td>
<td>TEOA</td>
<td>MeCN-H(_2)O (3:1 v/v)</td>
<td>300 W Xe lamp ((\lambda > 450 \text{ nm}))</td>
<td>0.45</td>
<td>CO: 64.2%</td>
<td>(\text{Small, } 2018, 14, 1800762)</td>
</tr>
<tr>
<td>4</td>
<td>carbon-nitride</td>
<td>Co(bpy)(_3^{2+})</td>
<td>TEOA</td>
<td>MeCN-H(_2)O (4:1v/v)</td>
<td>300 W Xe ((\lambda > 420 \text{ nm}))</td>
<td>0.47</td>
<td>CO: 81.83%</td>
<td>(\text{Appl. Catal. B-Environ, } 2015, 179, 1)</td>
</tr>
<tr>
<td>5</td>
<td>Pt/C-In(_2)O(_3)</td>
<td>--</td>
<td>Pt</td>
<td>TEOA-H(_2)O (1:9 v/v)</td>
<td>300 W Xe</td>
<td>0.77</td>
<td>CO: 63.3%</td>
<td>(\text{J. Am. Chem. Soc., } 2017, 139, 4123)</td>
</tr>
<tr>
<td>6</td>
<td>In(_2)S(_3)-CdIn(_2)S(_4)</td>
<td>Co(bpy)(_3^{2+})</td>
<td>TEOA</td>
<td>MeCN-H(_2)O (3:2 v/v)</td>
<td>300 W Xe ((\lambda > 400 \text{ nm}))</td>
<td>0.825</td>
<td>CO: 70.2%</td>
<td>(\text{J. Am. Chem. Soc., } 2017, 139, 17305)</td>
</tr>
<tr>
<td>7</td>
<td>MOF-Ni</td>
<td>[Ru(bpy)(_3)]Cl(_2)·6H(_2)O</td>
<td>TIPA</td>
<td>MeCN-H(_2)O (13:1 v/v)</td>
<td>300 W Xe ((\lambda > 420 \text{ nm}))</td>
<td>0.37</td>
<td>CO: 97.7%</td>
<td>(\text{ACS Catal., } 2019, 9, 1726)</td>
</tr>
<tr>
<td>8</td>
<td>RuRu′/Ag/C(_3)N(_4)</td>
<td>--</td>
<td>Ag(5.0 wt %)</td>
<td>DMA-TEOA (4:1 v/v)</td>
<td>300 W Xe ((\lambda > 400 \text{ nm}))</td>
<td>2.12</td>
<td>HCOOH: >99%</td>
<td>(\text{J. Am. Chem. Soc., } 2016, 138, 5159)</td>
</tr>
</tbody>
</table>

Major product selectivity:
- CH\(_4\): 77\%
- CO: 7\%
- H\(_2\): 16\%
- CO: 58\%
- H\(_2\): 42\%
- CO: 64.2\%
- H\(_2\): 35.8\%
- CO: 81.83\%
- H\(_2\): 18.17\%
- CO: 63.3\%
- CH\(_4\): 14.0\%
- H\(_2\): 22.7\%
- CO: 70.2\%
- H\(_2\): 29.8\%
- CO: 97.7\%
- H\(_2\): 2.3\%
- CO: 47.4\%
- H\(_2\): 52.6\%
- CO: 22.6\%
- H\(_2\): 77.4\%
<table>
<thead>
<tr>
<th></th>
<th>Catalyst</th>
<th>Precursor</th>
<th>Solvent</th>
<th>Light Source</th>
<th>Lambda (nm)</th>
<th>CO (%)</th>
<th>H₂ (%)</th>
<th>Ref.</th>
</tr>
</thead>
</table>
| 9 | MAF-X271-OH | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | LED(λ > 420 nm) | 2.59 | CO: 98.3%| H₂: 1.7% | *J. Am. Chem. Soc.*, 2018, 140, 38
| 10| Co₃O₄-400 | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | 300 W Xe lamp (λ > 420 nm) | 2.00(3h) | CO: 77.1% | H₂: 22.9% | *Adv. Mater.*, 2016, 28, 6485
| 12| BIF-101 | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | 300 W Xe lamp (λ > 420 nm) | 5.83 | CO: 84.1% | H₂: 15.9% | *J. Mater. Chem. A*, 2019, 7, 17272
| 13| Ni MOLs | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | 300 W Xe lamp (λ > 420 nm) | 12.50 | CO: 97.8% | H₂: 2.2% | *Angew. Chem. Int. Ed.*, 2018, 130, 17053
| 14| CoSn(OH)₃ | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | 300 W Xe lamp (λ > 420 nm) | 18.70 | CO: 86.18%| H₂: 13.82%| *Appl. Catal. B-Environ.*, 2018, 224, 1009
| 15| NiCo₂O₄ | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | 300 W Xe lamp (λ > 420 nm) | 21.82 | CO: 84% | H₂: 16% | *Phys. Chem. Chem. Phys.*, 2015, 17, 16040
| 16| ZnCo₂O₄ | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | Xe lamp (λ > 400 nm) | 25.38 | CO: 74.3%| H₂: 25.7%| *Chem. Commun.*, 2015, 51, 1517
| 17| NC@NiCo₂O₄ | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | 300 W Xe lamp (λ > 420 nm) | 26.20 | CO: 88.6%| H₂: 11.4%| *Energy Environ. Sci.*, 2018, 11, 306
| 18| Ni(TPA/TEG) | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | 300 W Xe lamp (λ > 420 nm) | 26.62 | CO: 100% | | *Sci. Adv.*, 2017, 3, e1700921
| 19| MnCo₂O₄ | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | 300 W Xe lamp (λ > 420 nm) | 28.51 | CO: 77.14%| H₂: 22.86%| *ACS Appl. Mater. Interfaces*, 2015, 7, 4327
| 20| Ni₃(HITP)₂ | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | LED (λ > 420 nm) | 34.50 | CO: 97% | H₂: 3% | *Appl. Catal. B-Environ.*, 2018, 238, 339
| 21| LaCoO₃ | [Ru(bpy)₃]Cl₂·6H₂O | MeCN-H₂O | 300 W Xe lamp (λ > 420 nm) | 44.20 | CO: 76% | H₂: 24% | *Chem. Commun.*, 2018, 54, 2272

Note: LED (λ > 420 nm) indicates light-emitting diode with a wavelength greater than 420 nm.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Co-ZIF-9</td>
<td>Bipyridine, CdS</td>
<td>TEOA</td>
<td>MeCN-H₂O (3:2 v/v)</td>
<td>300 W Xe lamp (λ > 450 nm)</td>
<td>50.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>ZIF-67</td>
<td>[Ru(bpy)₃]Cl₂·6H₂O</td>
<td>TEOA</td>
<td>MeCN-H₂O (3:2 v/v)</td>
<td>300 W Xe lamp (λ > 420 nm)</td>
<td>374.00</td>
<td>0.1 mg</td>
<td>CO: 74.2% H₂: 25.8%</td>
<td>Appl. Catal. B-Environ., 2017, 209, 476</td>
</tr>
<tr>
<td>24</td>
<td>u-CoAl-LDH</td>
<td>[Ru(bpy)₃]Cl₂·6H₂O</td>
<td>TEOA</td>
<td>MeCN-H₂O (3:1 v/v)</td>
<td>300 W Xe lamp (λ > 400 nm)</td>
<td>218.13</td>
<td>0.05 mg</td>
<td>CO: 52.56% H₂: 47.44%</td>
<td>This work</td>
</tr>
<tr>
<td>25</td>
<td>u-CoAl-LDH</td>
<td>[Ru(bpy)₃]Cl₂·6H₂O</td>
<td>TEOA</td>
<td>MeCN-H₂O (3:1 v/v)</td>
<td>300 W Xe lamp (λ = 600 nm)</td>
<td>43.73</td>
<td>0.05 mg</td>
<td>CO: 55.84% H₂: 44.16%</td>
<td>This work</td>
</tr>
</tbody>
</table>
Table S3. The optical density of the different monochromatic light sources used in the photocatalytic CO₂ reduction tests and the corresponding CO yield and AQY values for CO production using the u-CoAl-LDH photocatalyst (0.05 mg).

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Optical density (mW/cm²)</th>
<th>CO yield ×10⁻³ (mmol/h)</th>
<th>AQY CO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>405</td>
<td>77</td>
<td>8.98</td>
<td>2.44</td>
</tr>
<tr>
<td>470</td>
<td>90</td>
<td>10.36</td>
<td>2.07</td>
</tr>
<tr>
<td>550</td>
<td>92</td>
<td>7.91</td>
<td>1.32</td>
</tr>
<tr>
<td>600</td>
<td>140</td>
<td>2.19</td>
<td>0.22</td>
</tr>
<tr>
<td>650</td>
<td>113</td>
<td>0.02</td>
<td>0.0028</td>
</tr>
</tbody>
</table>

Figure S15. Digital photograph showing the various u-MAl-LDH photocatalysts.
Figure S16. Tauc plots for the various u-MAI-LDH photocatalysts. Band gaps determined from the plots are indicated for each u-MAI-LDH photocatalyst.
Figure S17. N\textsubscript{2}-sorption isotherms for the various u-MAI-LDH photocatalysts.

Table S4. BET specific surface areas for the various u-MAI-LDH photocatalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>u-MgAl-LDH</th>
<th>u-ZnAl-LDH</th>
<th>u-NiAl-LDH</th>
<th>u-CoAl-LDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET(m2/g)</td>
<td>194.98</td>
<td>69.40</td>
<td>233.69</td>
<td>46.44</td>
</tr>
</tbody>
</table>

N\textsubscript{2} adsorption-desorption were collected for the different u-MAI-LDH samples by N\textsubscript{2} physisorption at 77 K (Figure S17). All samples gave a type IV isotherm with a H3 adsorption-desorption hysteresis loop, indicating that the LDHs possessed mesopores. BET surface areas determined from the adsorption isotherms were summarized in Table S4. Interestingly, u-CoAl-LDH possessed the lowest BET surface area (46.44 m2/g), indicating that specific surface area was not a key factor influencing the activity of the u-MAI-LDH photocatalysts for CO\textsubscript{2} reduction (since u-CoAl-LDH was the most active photocatalyst)
Scheme S1. Probable reaction pathways involved in photocatalytic CO\(_2\) reduction over u-CoAl-LDH.
References

(3) Han, J. B.; Lu, J.; Wei, M.; Wang, Z. L.; Duan, X. Heterogeneous ultrathin films fabricated by alternate assembly of exfoliated layered double hydroxides and polyanion. *Chem. Commun.* **2008**, *41*, 5188-5190.

(10) Pan, Y. X.; You, Y.; Xin, S.; Li, Y.; Fu, G.; Cui, Z.; Men, Y. L.; Cao, F. F.; Yu, S. H.;

