Supporting Information

Rapid Upcycling of Waste Polyethylene Terephthalate (PET) to Energy Storing Disodium Terephthalate Flowers with DFT Calculations

Sourav Ghosh1,2, Maxim A. Makeev4, Zhimin Qi3, Haiyan Wang3, Nav Nidhi Rajput4, Surendra K. Martha2 and Vilas G. Pol1*

1Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.

2Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.

3Materials Engineering/Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.

4Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA.

*Corresponding author. Tel: +1-7654940805; E-mail: vpol@purdue.edu; martha@chy.iith.ac.in

Number of pages: 05
Number of tables: 00
Number of figures: 05
Section S1. Theoretical capacity calculation for Na$_2$Tp-SP Composite.

Specific capacities (1^{st} charge capacity) of Super P for different alkali ion are as follows (as shown in figure 4b, c)-

1. Super P // Li - 235 mAh g$^{-1}$.
2. Super P // Na - 120 mAh g$^{-1}$.

Theoretical capacity of Na$_2$Tp-Super P hybrid electrode- Slurry composition (Na$_2$Tp: Super P: PVDF = 5:4:1)

1. Mass fraction of Na$_2$Tp in the hybrid = $5/9 = 0.55$ or 55 %.
2. Mass fraction of Super P in the hybrid = $4/9 = 0.45$ or 45 %.

Theoretical capacity of Na$_2$Tp- 255 mAh g$^{-1}$ (considering 2e$^-$ transfer)

Theoretical capacities of Na$_2$Tp- Super P electrode for different alkali ion are as follows-

1. **LIB**- $0.55 \times (255 \text{ mAh g}^{-1}) + 0.45 \times (235 \text{ mAh g}^{-1}) = 140.25 + 105.75 = 246 \text{ mAh g}^{-1}$.
2. **NIB**- $0.55 \times (255 \text{ mAh g}^{-1}) + 0.45 \times (120 \text{ mAh g}^{-1}) = 140.25 + 54 = 194 \text{ mAh g}^{-1}$.
Section S2. 1H- and 13C NMR of Na$_2$Tp and Na$_2$Tp-SP composite anode

Figure S1. 1H-NMR spectra of as synthesised Na$_2$Tp

Figure S2. 13C-NMR spectra of as synthesised Na$_2$Tp.
Figure S3. 1H-NMR spectra of the Na$_2$Tp-SP composite anode after ball milling.

Figure S4. 13C-NMR spectra of Na$_2$Tp-SP composite anode after ball milling.
Section S3. TGA curve of PET waste.

Figure S5- TGA curve of waste PET flakes under atmospheric condition.