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Synthesis and Characterization Data
Scheme S1. Synthesis of N-carboxyanhydrides (NCAs)
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Figure S1. '"H NMR spectrum of leucine NCA in DMSO-dbs.
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Figure S2. '"H NMR spectrum of valine NCA in DMSO-ds.
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Figure S3. 'H NMR spectrum of Né-carboxybenzyl-lysine NCA in DMSO-ds.
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Scheme S2. General synthesis of polypeptide triblocks
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Figure S4. '"H NMR spectrum of PEO;13-PLVs in TFA-d. The degree of polymerization of the
leucine and valine blocks can be determined from peaks at 4.8 and 4.4 ppm respectively. Using
the PEO peak (a) at 3.9 ppm as a reference, leucine (c) integrates to 5 and valine (h) integrates to

1.
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Figure S5. '"H NMR spectrum of PEO;13-PLV6-PK30 in TFA-d. The degree of polymerization of
the lysine block can be determined from the peak at 4.46 ppm (1). Using the PEO peak (a) at 3.8
ppm as a reference, the lysine peak (1) integrates to 30.
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Figure S6. '"H NMR spectrum of PEO113-PLV4s in TFA-d. The degree of polymerization of the
leucine and valine blocks can be determined from peaks at 4.8 and 4.4 ppm respectively. Using
the PEO peak (a) at 3.9 ppm as a reference, leucine (c) integrates to 32 and valine (h) integrates
to 16.
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Figure S7. '"H NMR spectrum of PEO113-PLV43-PK4o in TFA-d. The degree of polymerization
of the lysine block can be determined from the peak at 4.4 ppm (1). Using the PEO peak (a) at 3.8
ppm as a reference, the lysine peak (1) integrates to 40.
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Figure S8. '"H NMR spectrum of PEQ4s-PL71-PKe2 in CDCl3 / 15 v/v% TFA. The degree of
polymerization of the lysine block can be determined from the peak at 4.43 ppm (h). Using the
PEO peak (a) at 3.8 ppm as a reference, the leucine peak (c) integrated to 71 and lysine peak (h)
integrates to 62.
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Figure S9. '"H NMR spectrum of PEQ4s-PL71-PK3 in CDCl3 / 15 v/v% TFA. The degree of
polymerization of the lysine block can be determined from the peak at 4.43 ppm (h). Using the
PEO peak (a) at 3.8 ppm as a reference, the leucine peak (c) integrated to 71 and lysine peak (h)
integrates to 30.
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Scheme S3. Deprotection of poly(lysine) block
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Figure S10. GPC dRI trace of mPEO113-NH> macroinitiator (black), and PEO113-PLVs-PK(Z)30

triblock (blue).

Table S1. Polymer number average molecular weight (Mn), weight average molecular weight
(My) and dispersity(D) calculated from GPC results.

Polymer M, (g/mol) My (g/mol) b
mPEO13-NH; 5,809 6,025 1.04
PEO113-PLV6-PK30 (Z) 22,240 28,170 1.27
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Calculation of Hildebrand Solubility Parameters (0)

Molecular Models: A series of oligomer models were constructed in Materials Studio
2018 with the Build Polymers function. For PEO, the oligomers ranged from 10-mer to 40-mer
and contained methyl and hydroxyl end groups. Construction of oligomers of leucine, lysine, and
valine contained N-methyl and proton end groups. Based on the block sizes in the triblock
copolymer, the oligomers of leucine (4 to 10-mers), lysine (4 to 16-mers), and valine (4 to 10-
mers) were chosen accordingly.

Molecular Dynamics (MD) Simulation: Calculation of & was accomplished with the
Forcite Module of Materials Studio 2018. The method for minimizing the energy of oligomers
involved adaptation of established methods.!> This MD strategy (Scheme S4) involved
constructing a polymer chain, minimizing energy of a single polymer chain through Geometry
Optimization, packing a cubic cell with polymer chains, minimizing energy of the cell through
Geometry Optimization, annealing the cell with multiple heating and cooling cycles under constant
volume conditions (NVT), compression and expansion cycles to find the correct density under
NPT conditions, and calculation of d.

Initially, a single polymer chain composed of n-monomer units underwent an energy
minimization procedure using the Forcite module in Materials Studio 2018. This Geometry
Optimization procedure typically involved 2,000-10,000 steps with a Smart minimization
algorithm that chooses the best minimization methods, like conjugate gradient or steepest descent,
depending on the system. The procedure for optimizing this single chain employed a COMPASS
IT force field in the Forcite module.’-> Optimization continued until meeting a 1.0 x10* kcal/mol
energy convergence, a 0.005 kcal/mol/A force convergence, and a 5.0 x10° A displacement
convergence criteria.

After minimizing the energy of a single chain, a cubic box (3 nm x 3 nm x 3 nm) with
periodic boundary conditions was packed with polymer chains using the Amorphous Cell module.
These box dimensions represent typical sizes.! In the case of PEO, the Amorphous Cell consisted
of 21 PEO chains, each with 20 monomer units. For octamers of polyleucine, the cubic box (3 nm
x 3 nm x 3 nm) with periodic boundary conditions contained 18 oligomers. During packing of the
Amorphous Cell, the density ramped from 0.6 g/mL to the 1.1 g/mL to minimize voids. Then, the
cubic cell was subjected to a similar Geometry Optimization procedure as the single polymer
chain. Afterwards, 5 annealing cycles were conducted under constant volume conditions (i.e.
NVT) with a sinusoidal temperature profile by ramping the temperature from 300K to 700K in
100K increments. Choice of annealing temperatures and NVT ensemble are based on literature
values. Next, the density of the annealed cell was refined through a MD simulation with NPT
ensemble for 300 ps with a 1 fs time step for a total of 300,000 steps. The non-bonded cutoff was
10 A. Every 5000 steps, a frame was exported to provide 60 frames for analysis. After discarding
frames 1-30, frames 31-60 were used to determine §. Finally, the Cohesive Energy Density
function of Forcite was employed to calculate the 6 value for each frame.
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Calculation of Hildebrand Solubility Parameters for (TFA) was conducted with the Forcite Module
of Materials Studio 2018. Initially, an Amorphous Cell was packed with 200 TFA molecules using
known density values.*? The cell underwent a Geometry Optimization procedure until meeting a
1.0 x10* kcal/mol energy convergence, a 0.005 kcal/mol/A force convergence, and a 5.0 x10 A
displacement convergence criteria. Then, the cell was subjected to 5 annealing cycles under
constant volume conditions (i.e. NVT) with a sinusoidal temperature ramp from 300K to 500K.
Afterwards, further equilibration involved a MD simulation with NVT ensemble for 300 ps with a
1 fs time step and non-bonded cutoff of 12 A. Every 5000 steps, a frame was exported to provide
60 frames for analysis. After discarding frames 1-30, frames 31-60 were used to determine o.
Finally, the Cohesive Energy Density function of Forcite was employed to calculate the & value
for each frame. This method was repeated for four different TFA densities ranging from 1.43 mL
to 1.58 g/mL.
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Scheme S4. Flow chart showing method for determining & values for oligomers using Materials
Studio 2018.

DPD Computational Models

For building and analysis of the molecular models, the Scienomics MAPS 4.2 (Materials
and Processes Simulations) software was used, and dissipative particle dynamics (DPD)
simulations were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) software. Some analysis was also done with Visual Molecular Dynamics (VMD)
software version 1.9.1.

First, a custom parameter library for the DPD simulations was created to represent the
bonded and nonbonded interaction terms between the beads that represent each of the necessary
components in the systems: leucine (L), valine (V), water (W), and TFA. The non-bonded term
that represents bead incompatibility is a, where a larger value indicates a higher degree of
incompatibility. The parameter library also contained terms that represent the dynamics of the
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covalent bond of length r between connected beads as a harmonic spring which has the functional
form k(r-ro)? , where k is the stiffness of the spring/bond and ry is the equilibrium bond length. The
dynamics of the angles (0) between three bonded beads were also defined as harmonic with the
formula K(0-09)?, where K represents the angle stiffness, and 6o is the equilibrium angle. All of
these parameter values are given in Table S2.

Each of the nine systems were created with the DPD builder in MAPS. First, the PLVs
oligomer was created, with 5 L units and 1 V unit connected by harmonic springs to mimic a
chemical bond. To mimic the rigid character of the PL V¢ helix, the stiffness of the bond and angle
harmonic springs (Kij, Kijk) were set to high values. The position of the valine was varied to either
the first, second, or third position and the oligomer was treated as a rotationally invariant rod. All
simulations were performed in a cubic box with the unit less dimensions of 20 x 20 x 20. Solvent
was then added to the simulation box model, and three different solvent conditions were
investigated: 100 v/v% water, 100 v/v% TFA, and 50 v/v% TFA. The three different PLVs
oligomers were built with each of three solvent compositions for a total of nine simulation model
systems. The simulation boxes were built with 1 wt.% PLVs oligomers.

To minimize the initial energy, a geometry optimization calculation was performed on each
built system using the conjugated gradient method for 10,000 steps using LAMMPS. Then, DPD
simulations were performed under NVT conditions at room temperature utilizing periodic
boundary conditions (PBC). Each DPD simulation was conducted for 300,000 steps with a 0.005
timestep.

The output of each simulation was loaded back into MAPS for an analysis of the resulting
structures where visual observations were made. Other quantities were calculated in the Visual
Molecular Dynamics (VMD) software. The radial distribution function (RDF) was calculated
using VMD with a focus on the following groups of atoms in each system: L-L, V-V, L-V, and
PLV-PLV. Using the VMD’s Analysis feature, the RDF for each group of atoms was calculated
over the last 10 frames of the LAMMPS trajectory (out of 101 frames), representing the 300,000
steps of the DPD simulation.
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Figure S11. Computational models of an oligomeric PLV block in 100% water (A, D, G), 50 v/v%
water-TFA (B, E, H), and 100% TFA (C, F, I).

S16



Table S2. Parameter Library for the Systems of Interest.

i J aij
L \Y 26.8
L TFA 28.2
Bead
L 47.8
Incompatibility W !
\Y TFA 27.6
\Y A\ 46.8
w TFA 41.9
i-j Kij ro,jj
L-L
Harmonic Bonds
V-V 200.0 0.5
L-V
i-j-k Kijk 00, ijk
L-L-L
V-V-V
Harmonic Angles L-L-V
1000.0 180.0
L-V-V
L-V-L
V-L-V
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Figure S12. Plots of (A) I vs. g* and (B) Defr vs. ¢ for PEO;13-PLVs-PK39 at 0.05 wt% in pH 2, 4,
6 buffers prepared with a THF co-solvent.

2.0x107

1.5x107

1.0x107 |

Kc/R (mol/g)

5.0x10°

0.0 1 L L
0 2x10" 4x10™ 6x10" 8x10"

q* (m?)

Figure S13. Plot of total scattered intensity vs. g> for PEO113-PLV-PK30 at 0.05 wt% in pH 2, 4,
6 buffers prepared with a THF co-solvent.
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Figure S14. CD Spectra of PEO113-PLVe-PK30 at 0.05 wt% in pH 2, 9 buffers prepared from THF
co-solvents.
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Figure S15. Plot of total scattered intensity vs. g* for PEO113-PLVs-PK3p at 0.05 wt% in pH 2
buffer prepared with a THF solvent switch.
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Figure S16. CD Spectra of PEO113-PLVs-PK30 at 0.05 wt% in pH 2 buffer prepared from a THF

solvent switch.
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Figure S17. Plots of (A) T vs. g% and (B) Defr vs. g for PEO113-PLVs-PK30 in pH 2 buffer prepared
with a TFA co-solvent.
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Figure S18. Plot of total scattered intensity vs. g? for PEO113-PLVe-PK30 in pH 2 buffer prepared
with a TFA co-solvent.
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TFA Solvent Switch
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Figure S20. Plots of (A) I vs. g% and (B) Defr vs. g for PEO113-PLVs-PK30 in pH 2 buffer prepared

with a TFA solvent switch.
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Figure S21. Plot of total scattered intensity vs. ¢? for PEO113-PLVe-PK3 in pH 2 buffer prepared

with a TFA solvent switch.
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DMF Co-Solvent
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Figure S22. Plots of (A) I' vs. ¢? and (B) Det vs. g for PEO113-PLVe-PK3 in 35 wt% DMF/pH 2
buffer (red), and pH 2 buffer (blue) prepared with a DMF co-solvent.
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Figure S23. Plot of total scattered intensity vs. g* for PEO113-PLVs-PK30 35 wt% DMF/pH 2 buffer
(red), and pH 2 buffer (blue) prepared with a DMF co-solvent.
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Figure S24. CD Spectra of PEO113-PLVs-PK30 at 0.05 wt% in pH 2 buffer prepared from a DMF
co-solvent. Peak at 207 nm and 225 nm is due to residual DMF in the solution.
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Figure S25. Plots of (A) I vs. ¢?> and (B) Desr vs. g for PEO113-PLVe-PK3 at 0.06 wt% in DMF
(black), 50/50 v/v% DMF/pH 2 buffer (red), and pH 2 buffer (blue) prepared with a DMF solvent
switch.
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Figure S26. Plot of total scattered intensity vs. g> for PEO113-PLVs-PK30 at 0.06 wt% in DMF
(black), 50/50 v/v% DMF/pH 2 buffer (red), and pH 2 buffer (blue) prepared with a DMF solvent
switch.
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Figure S27. CD Spectra of PEO113-PLVs-PK3 at 0.06 wt% in pH 2 buffer prepared from a DMF
solvent switch. Peak at 207 nm and 225 nm is due to residual DMF in the solution.
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Dioxane Co-solvent
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Figure S28. Plots of (A) I' vs. ¢> and (B) Desr vs. g for PEO113-PLV6-PK30 at 0.05 wt% in pH 2
buffer, prepared with a dioxane co-solvent.
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Figure S29. Plot of total scattered intensity vs. g* for PEO113-PLVs-PK3p at 0.05 wt% in pH 2
buffer, prepared with a dioxane co-solvent.
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Figure S30. CD Spectra of PEO113-PLVs-PK30 at 0.05 wt% in pH 2 buffer prepared from a dioxane

co-solvent.
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Figure S31. Plots of (A) ' vs. ¢* and (B) Desr vs. ¢ for PEO113-PLV-PK30 at 0.05 wt% in dioxane
(black), 50/50 v/v% dioxane/pH 2 buffer (red), and pH 2 buffer (blue) prepared with a dioxane

solvent switch.
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Figure S32. Plot of total scattered intensity vs. g for PEO113-PLV6-PK3 at 0.05 wt% in dioxane
(black), 50/50 v/v% dioxane/pH 2 buffer (red), and pH 2 buffer (blue) prepared with a dioxane
solvent switch.
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Figure S33. CD Spectra of PEO113-PLV¢-PK30 at 0.05 wt% in pH 2 buffer prepared from a dioxane
solvent switch. Peak at 208 nm and 230 nm is due to residual dioxane in the solution.
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DMSO Co-Solvent
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Figure S34. Plots of (A) T vs. ¢* and (B) Defr vs. g for PEO113-PLVs-PK30 in 35 wt% DMSO/pH

2 buffer (red), and pH 2 buffer (blue) prepared with a DMSO co-solvent.
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Figure S35. Plot of total scattered intensity vs. ¢> for PEO113-PLV6-PK30 35 wt% DMSO/pH 2
buffer (red), and pH 2 buffer (blue) prepared with a DMSO co-solvent.
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Figure S36. CD Spectra of PEO113-PLVs-PK30 at 0.09 wt% in pH 2 buffer prepared from a DMSO
co-solvent.
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Figure S37. Plots of (A) I vs. g* and (B) Detr vs. g for PEO113-PLV-PK30 at 0.05 wt% in DMSO
(black), 50/50 v/v% DMSO/pH 2 buffer (red), and pH 2 buffer (blue) prepared with a DMSO
solvent switch.
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Figure S38. Plot of total scattered intensity vs. g for PEO113-PLV6-PK3 at 0.05 wt% in dioxane
(black), 50/50 v/v% dioxane/pH 2 buffer (red), and pH 2 buffer (blue) prepared with a dioxane
solvent switch.
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Figure S39. Plots of (A) I vs. ¢?> and (B) Desr vs. g for PEO113-PLV¢-PK30 at 0.05 wt% in pH 2

buffer.
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Figure S40. Plot of total scattered intensity vs. g* for PEO;13-PLV-PK3p at 0.05 wt% pH 2 buffer.
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Figure S41. CD Spectra of PEO113-PLV¢-PK30 at 0.05 wt% in pH 2 buffer.
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Urea Solvent Switch
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Figure S42. Plots of (A) T vs. ¢?> and (B) Desr vs. g for PEO113-PLV¢-PK30 at 0.07 wt% in 5 M
Urea solution (red) and pH 2 buffer (blue). The Ry of the final assemblies was 59 nm.
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Figure S43. Plot of total scattered intensity vs. g> for PEO13-PLVs-PK30 at 0.07 wt% in 5 M Urea
solution (red) and pH 2 buffer (blue). The R, of the final assemblies was 96 nm.
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Figure S44. CD Spectra of PEO113-PLVs-PK30 at 0.07 wt% in 5 M Urea solution (red) and pH 2
buffer (black), prepared from a urea co-solvent.

TFA Progression Study
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Figure S45. Additional plot of Desr vs. g for PEO113-PLVs-PK30 in pH 2 buffer prepared with a
TFA solvent switch, showing good agreement with Figure 7, confirming reproducibility of results.
Aliquots were taken to monitor assembly size and angular dependence as a function of TFA wt%.
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Effect of TFE on assembly size

PEO,_ _-PLV -PK PEO,_ -PLV_-PK
113 6 V30 " 13 6 V30
2500 5.0x10
= 10% TFE = 10%TFE
o 25%TFE o 25%TFE
* 50% TFE . o 50%TFE
2000 <« water . 40x107F Wa:er
- <
<
L -
1500 - - . 3.0x10" ansnt
~ e, @ c et
- . * . o~ ] <« 4 ‘e
“ 1000 > . € R
- hd 42|
— 1 I ad Ez.omo— . T ° o o0’
g < Q - < .
t | . . ° o ° .
500 - H roxt0t e ° *
e
X e * PSS B4 .
0 l!:.’-""-... ! 0.0 v n. ¢ ..‘.'Ol’...'.“
14 14 14 y
0.0 2.0x10"  4.0x10 6.0x10 8.0x10 5.0x10° 1.0x10" 1.5x10" 2.0x107 2.5x107
2 2 4
q° m? qm’)

Figure S46. Plots of (A) T vs. ¢? and (B) Defr vs. g for PEO113-PLV¢-PK3 in pH 2 buffer (blue)
with 10% TFE (black), 25% TFE (red), and 50% TFE (green).
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Figure S47. Plot of refractive index vs. TFA concentration. Samples with a known concentration
were first used to create a standard curve (black points, red curve). The refractive index of the
TFA/water solution was taken periodically during the solvent switch process (purple) to
determine TFA concentration.
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PEO113-PLV4s-PK4 TFA Solvent Switch
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Figure S48. Plots of (A) I vs. ¢? and (B) Desr vs. g for PEO113-PLV4s-PK4p at 0.05 wt% in pH 2
buffer prepared from a TFA solvent switch.
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Figure S49. Plot of total scattered intensity vs. g> for PEO13-PLVs-PK30 at 0.05 wt% pH 2 buffer

prepared from a TFA solvent switch.
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