Supporting Information

ZnO Decorated In/Ga Oxides Nanotubes Derived from Bimetallic In/Ga MOFs for Fast Acetone Detection with High Sensitivity and Selectivity

Yanlin Zhanga, Chaowei Jiaa, Quan Konga, Nanyu Fana, Gang Chena, Hongtao Guana, b, Chengjun Donga, b

\textit{a} School of Materials and Energy, Yunnan University, 650091 Kunming, Peoples’ Republic of China

Corresponding authors:
htguan06@ynu.edu.cn (Hongtao Guan)
dongcj@ynu.edu.cn (Chengjun Dong)
Figure S1 FTIR spectra of the In/Ga-MOF and In/Ga-MOF@Zn$^{2+}$ samples.

Figure S2 TGA-DSC curves for the decomposition of MIL-68(In/Ga) precursors in air atmosphere.
Figure S3 The EDS spectrum of IGO@ZnO (Note: the C element is from conductive tape).

Figure S4 Nitrogen adsorption–desorption isotherms recorded at 77 K for IGO and IGO@ZnO.
Figure S5 Long-term stability of the sensors toward 100 ppm and 500 ppm acetone at the working temperature of 300 °C.

Figure S6 The real resistance change in air and 100 ppm acetone of gas sensors based on IGO and IGO@ZnO.
Figure S7 XPS spectra of (a) In 3d and (b) Ga 2p of IGO, and (c) In 3d, (d) Ga 2p and (e) Zn 2p of IGO@ZnO.
Figure S8 PL spectra of IGO and IGO@ZnO with an excitation wavelength of 380 nm.