Supplemental Information

Electronic Structure, Optical Properties and Photoelectrochemical Activity of Sn Doped Fe$_2$O$_3$ Thin Films

C. M. Tian1*, W.-W. Li2*, Y. M. Lin1, Z. Z. Yang3, L. Wang3, Y. G. Du3, H. Y. Xiao4, L. Qiao4, J.Y. Zhang1,5, L. Chen5, Dong-Chen Qi6, J. L. MacManus-Driscoll2, K. H. L. Zhang1,2*

1 State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
2 Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
3 Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
4 School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
5 Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
6 Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia

*Two authors contribute equally to this work.

E-mail: kelvinzhang@xmu.edu.cn
Figure S1. The XRD θ-2θ scan of the Fe$_2$O$_3$/Ta-SnO$_2$/Al$_2$O$_3$ thin films, showing the well-defined Kiessing fringes and confirming the high quality of the epitaxial films. Inset: the growth of a 20 nm thick 3%Ta doped SnO$_2$ layer as a conductive layer on Al$_2$O$_3$(0001) substrate, followed by the growth of 30 nm undoped Fe$_2$O$_3$ for XPS measurement.

Figure S2. The large area cross-sectional STEM image of the Fe$_2$O$_3$/Al$_2$O$_3$(0001), showing a smooth and uniform Fe$_2$O$_3$ film over a large lateral length scale.
Figure S3. XPS core level spectra of (a) O 1s and (b) Fe 3p of Sn doped Fe$_2$O$_3$. The shifts of binding energy (BE) for O 1s and Fe 3p as function of Sn doping level were averaged to estimate the shift of the Fermi level displayed in Figure 5a.