Supporting Information for

Stretchable and superelastic fibrous sponges tailored by “stiff-soft” bi-component electrospun fibers for warmth retention

Hongyan Wu#, †, Yuyao Li#, †, Lei Zhao, † Sai Wang, † Yucheng Tian, † Yang Si*, ‡, Jianyong Yu, † and Bin Ding*, †, ‡

†State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China

‡Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.

* E-mail: yangsi@dhu.edu.cn; binding@dhu.edu.cn

1
Figure S1. SEM images of their cross-section of the PS fibers assembly that was prepared under different RHs and rotating speed of the cylinder. (a) RH=35%, 23 rpm; (b) RH=55%, 23 rpm; (c) RH=85%, 23 rpm; (d) RH=85%, 100 rpm.
Figure S2. (a) Viscosity of PS/PU solution with various mass ratios of PS/PU; (b) Average fiber diameter of PS/PU fibrous assemblies fabricated with various mass ratios of PS/PU.
Figure S3. Photographs showing the change of 200 μL PS/PU solution with various mass ratios of PS/PU when they were exposed in RH = 85%.
Figure S4. (a) Viscosity of PS/PU solution with various TTMA content; (b) Average fiber diameter of PS/PU fibrous assemblies fabricated with various TTMA content.
Figure S5. The chemical reaction of TTMA during the thermal induce crosslinking treatment process.

Figure S6. Images showing that the profiles of the PS/PUFS-20 during tensile with progressively increasing strains of 10%, 20%, 30%, and 40%.
Figure S7. Images showing that the PS/PUFS could quickly recover from large compressive distortion.
Figure S8. (a) Hydrophobicity property of PS/PUFS, (b) An optical image of PS/PUFS on a large scale.
Figure S9. An image of PS/PU fibrous assembly with a large scale on the roller.

Figure S10. The optical images of (a) a blow-up of PS/PU fibrous assembly before crosslinking and (b) a blown-up of PS/PUFS after crosslinking.