Supporting Information

Selective Detection of Ethylene by MoS$_2$–Carbon Nanotube Networks Coated with Cu(I)–Pincer Complexes

Winston Yenyu Chen,†‡ Aiganym Yermembetova,†‡ Benjamin M. Washer,§‡ Xiaofan Jiang,∥‡ Shoumya Nandy Shuvo,† Dimitrios Peroulis,‡∥ Alexander Wei,†‡§,* and Lia Stanciu†‡,*

†School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
‡Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 USA
§Department of Chemistry, Purdue University, West Lafayette, IN 47907 USA
∥School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
Figure S1. Experimental setup for gas-sensing measurements using wireless MoS$_2$-SCNT-based sensors. The masses of each fruit tested are as follows: bananas (1.09 kg), apples (1.2 kg), tomatoes (1.08 kg), oranges (1.19 kg), and strawberries (1.08 kg).

Figure S2. Functional block diagram and image of wireless ethylene sensor.
Figure S3. (a) Dynamic response curves of 2-MoS$_2$ to 10 ppm of ethylene (b) Electrical noise measurements of 2-MoS$_2$, MoS$_2$–SCNT, 1-MoS$_2$–SCNT, 2-MoS$_2$–SCNT during nitrogen exposure.

Figure S4. Real-time response to ethylene (C2; 10 ppm) by 2-MoS$_2$–SCNT using different carrier gases (N$_2$ and air).
Figure S5. Long-term stability of the 2-MoS$_2$-SCNT sensor, with exposure to 1 ppm ethylene for 5 minutes every two days over one month. Data points represent steady-state $-\Delta G/G_0$ values.

![Graph showing long-term stability of the 2-MoS$_2$-SCNT sensor](image)

(a) (b)

Figure S6. Atomic force microscopy (AFM) images of MoS$_2$–SCNT dropcast onto Si: (a) $R_{\text{max}} = 205$ nm; (b) $R_{\text{max}} = 392$ nm.

![AFM images of MoS$_2$–SCNT dropcast onto Si](image)