Supporting Information

On the Nature of Terminating Hydroxyl Groups and Intercalating Water in Ti$_3$C$_2$T$_x$ MXenes: A Study by 1H Solid-State NMR and DFT Calculations

Takeshi Kobayashi,a Yangyunli Sun,b Kaitlyn Prenger,c De-en Jiang,b Michael Naguib,c Marek Pruskia,d,*

a Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, United States

b Department of Chemistry, University of California, Riverside, CA 92521, United States

c Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, United States

d Department of Chemistry, Iowa State University, Ames, IA 50011, United States
Synthesis of MAX phase Ti₃AlC₂

MAX Ti₃AlC₂ was synthesized similarly to that reported by Huang and Mochalin.¹ Powders of titanium (Alfa Aesar, 99.5%, -325 mesh), aluminum (Alfa Aesar, 99.5%, -325 mesh), and graphite (Alfa Aesar, 99%, APS 7-11μm) were mixed in ratios of 3:1.2:1.88 in a Turbula T2F mixer for 3 h, then furnaced in a tube furnace under continuous flow of argon at 1600 °C for 2 h with a heating rate of 10°C/minute. After cooling, powders were ground to -325 mesh for use in etching.

¹H–¹H SQ/SQ correlation spectra of MXene annealed at 110 °C.

Figure S1. 2D ¹H–¹H SQ/SQ spectra of Ti₃C₂Tx MXene annealed at 110 °C. and 200 °C, taken with τ_{mix} = 50 ms, 100 ms, and 150 ms, 256 t₁ points, and Δt₁ = 55.6 μs.
DFT calculations

Figure S2. Computed 1H chemical shifts for Ti–OH terminations on AA-stacking MXene.

References