Supporting Information for:

Optical Sensing with a Potentiometric Sensing Array by Prussian Blue Film Integrated Closed Bipolar Electrodes

Sutida Jansod¹, Thomas Cherubini¹, Yoshiki Soda¹ and Eric Bakker*¹

¹Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland.

Corresponding author: eric.bakker@unige.ch

Table of Contents

Theory of ion-selective bipolar electrode .. S2
Photograph of experiment setup and schematic illustration S4
Flow cell in the sample compartment for inserting numerous ISEs S5
Fabrication of patterned PB array .. S5

Figure S1. Cyclic voltammogram of the PB electrode in 3 M KCl (pH 2). The scan rate is 5 mV s⁻¹. An Ag/AgCl element is used as the reference/counter electrode. .. S6

Figure S2. (Left) Cyclic voltammogram of PB electrode in a solution of 3 M KCl (pH 2) at different scan rates. (Right) Linear relationship between peak height and scan rate for the PB film. .. S6

Figure S3. Anodic and cathodic potentials are imposed (scan rate of 0.5 mV s⁻¹) to the PB electrode in the detection cell only. (a) Integrated charge of PB film observed for different applied potentials. (b) The relationship of PB absorbance with integrated PB charge. .. S7

Figure S4. (Left) Calibration curves of three different potentiometric probes based on the liquid PVC membranes in the flow cell. (Right) Observation of potentiometric time traces (n=3) upon simultaneously changes of K⁺ (blue), Na⁺ (green) and Ca²⁺ (red) concentrations. .. S7

Figure S5. (Left) Reproducible time trace of K-ISE, Na-ISE and Ca-ISE in the sample compartment at high concentrations between 1 and 10 mM of the KCl (blue), NaCl (green) and CaCl₂ (red). (Right) Corresponding EMF values of K-ISE, Na-ISE and Ca-ISE (n=3) at each concentration. .. S8

Figure S6. Electrochemical perturbation only at Na-ISE probe containing 1 mM NaCl in sample compartment. A constant current amplitude of 0.25 µA for a period of 30 s or 7.5 µC is imposed. The potential (OCP) readout; a) before perturbation, b) during perturbation and c) after perturbation are observed. .. S8

Figure S7. (Top) Normalized current responses of the classical BPE of (Left) K⁺-selective BPE, and (Right) Ca²⁺-selective BPE. The scan rate is 1 mV s⁻¹. (Bottom) Corresponding absorbance changes in the detection compartment at each applied potential and with increasing concentration in sample compartment. Error bars are standard deviations (n=3). The absorbance calibration curves are fitted by using eq. 6. .. S9

Figure S8. A relationship between absorbance and logarithmic ion activities of (Left) K-BPE and (Right) Ca-BPE in classical (colored symbols) and multiple BPEs (black symbols) platforms at three different constant applied potentials. The sigmoidal curves are calculated by the Boltzmann equation. .. S9

Figure S9. PB reproducibility of Na-BPE. Different applied potentials of -150 and -120 mV are imposed with 0.1 mM NaCl in the sample compartment. .. S10

Figure S10. Selectivity of K-BPE (Left) and Ca-BPE (Right) in the BPE sensor array. (Left) A constant potential of -100 mV is imposed in the cell, where the sample contains only 1 mM KCl. (Right) A constant potential of -170 mV is imposed, where the sample contains only 1 mM CaCl₂. .. S10

Figure S11. Images of the multiple cation-selective BPEs array. The BPEs array comprises of K-BPE (ch1), Na-BPE (ch2) and Ca-BPE (ch3). The absorbance values are observed at fixed potential, at which the sample solution contains only (a) 1 mM NaCl (E_{app} = -100 mV), (b) 1 mM KCl (E_{app} = -100 mV) and (c) 1 mM CaCl₂ (E_{app} = -170 mV). .. S11

Figure S12. Observed PB absorbance which are plotted on the calibration curves of Na-BPE, K-BPE and Ca-BPE. Quantitative analysis of sodium (left), potassium (middle) and calcium (right) contents in real-world samples using the multiple cation selective BPEs sensor array. .. S11

Figure S13. The integrated charge of PB film (anodic peak) with increasing number of cycles, as indicated. The PB film was deposited for 30 s by passing a cathodic current density of 2.0 A m⁻² through the ITO electrode. For this experiment, the film is in contact with 3 M KCl (pH 2). The potential is applied through the PB electrode by alternating between 0.4 and 0.2 V vs Ag/AgCl. .. S12
Theory of ion-selective bipolar electrode

The redox indicator film, Prussian blue (PB)/Prussian white (PW) deposited onto a transparent ITO electrode is connected in series to the ion-selective electrode (ISE) in the sample compartment in a closed bipolar configuration, as shown below. Each element is labeled by a number in red color.

1 Working electrode connection, Ag/AgCl element in contact with detection compartment:

\[E_{AgCl/Cl} = E_{AgCl/Ag}^0 - s \log a_{Cl}^{det} \] \hspace{1cm} (S1)

2 Potential at PB film on the ITO electrode:

\[E_{\text{det}} = E_{PW/PB}^0 - s \log \frac{c_{PW}}{c_{PB}} + s \log a_{K}^{det} \] \hspace{1cm} (S2)

or, after inserting the apparent mass balance equation for Prussian Blue:

\[E_{\text{det}} = E_{PW/PB}^0 - s \log \frac{c_T - c_{PB}}{c_{PB}} + s \log a_{K}^{det} ; c_{PW} = c_T - c_{PB} \] \hspace{1cm} (S3)

where \(c_T \) is the total film concentration. To approximately express the concentration in terms of absorbance based on Beer’s law:

\[A_{\text{max}} = \varepsilon_{PB} \cdot c_T \cdot l \] \hspace{1cm} (S4)

\[A_{PB} = \varepsilon_{PB} \cdot c_{PB} \cdot l \] \hspace{1cm} (S5)

Equations S4 and S5 are inserted into eq S3 to obtain:

\[E_{\text{det}} = E_{PW/PB}^0 - s \log \frac{A_{\text{max}} - A_{PB}}{A_{PB}} + s \log a_{K}^{det} \] \hspace{1cm} (S6)
3 Potential at Ag/AgCl element in the inner solution of the ISE:

$$E'_{AgCl/Cl} = E'^0_{AgCl/Ag} - s \log a^{ifs}_{Cl}$$

(S7)

4 Membrane potential at the ISE:

$$E_M = s \log \frac{a^{sample}_i}{a^{ifs}_i}$$

(S8)

5 Ag/AgCl element of the reference electrode, in contact with the reference solution (ref):

$$E'_{AgCl/Cl} = E'^0_{AgCl/Ag} - s \log a^{ref}_{Cl} + E_J$$

(S9)

where E_J is the liquid junction potential.

When a constant applied potential is imposed in the bipolar electrode cell, the elements described above are combined together as follows:

$$E_{cell} = (1) - (2) + (3) + (4) - (5)$$

Specifically,

$$E_{cell} = E'^0_{AgCl/Ag} - E'^0_{PW/PB} - s \log \left(a^{det}_{Cl} a^{det}_{K} a^{ifs}_{Cl} \right) + s \log \frac{A_{max} - A_{PB}}{A_{PB}} + s \log \frac{a^{sample}_i}{a^{ifs}_i} - E_J$$

(S10)

or, simplified:

$$E_{cell} = E_{const} + s \log \frac{A_{max} - A_{PB}}{A_{PB}} + s \log a^{sample}_i$$

(S11)

This equation is rewritten as follows to express the absorbance change as a function of sample activity:

$$\frac{A_{max} - A_{PB}}{A_{PB}} = (a^{sample}_i)^{-1/z_i} \cdot \psi \quad \text{with} \quad \psi = 10^{\frac{E_{cell} - E_{const}}{s}}$$

(S12)

The Prussian Blue film absorbance is given by solving eq S12 as follows:
\[A_{PB} = A_{\text{max}} \left(\frac{\psi}{a_i^{1/z_i}} + 1 \right)^{-1} \]

(S13)

Photograph of experimental setup

The closed bipolar electrode sensor array contains two separate compartments. One is the detection compartment and the other is the sample compartment. Ion-selective electrodes (ISEs) are in contact with the sample compartment and connected to the PB electrodes in the detection compartment, as shown in the photograph below. The detection compartment contains 3 M KCl into which the PB electrodes are immersed. In the bipolar configuration, a constant potential is imposed in the bipolar cell between the working electrode (Ag/AgCl wire) in detection compartment and Ag electrode (CE) in sample compartment, where the double junction reference electrode (RE) is in a bulk solution in sample compartment. The camera is placed in front of the detection compartment to record consecutive images.

![Photograph of experimental setup](image)

Schematic illustration

This scheme shows the connection between each individual ISE and the PB electrode in a closed bipolar sensor array configuration.
Flow cell in the sample compartment for inserting numerous ISEs

The flow cell contains openings for inserting three ion-selective electrodes as labeled with ISE 1, ISE 2 and ISE 3 (Ostec electrode bodies). Visible are the inlet and outlet holes, by which the sample is guided into and out to the bulk solution by peristaltic pumping. An Ag electrode is inserted into the flow cell at CE to serve as a counter electrode. The reference electrode is placed just outside the outlet in a beaker filled with electrolyte solution.

Fabrication of patterned PB array

The conductive ITO film coated glass slide (25×25×1.1mm) is etched into 3 channels as an example. The entire ITO glass surface was first covered by insulating tape. To remove the ITO film, the tape was cut by a cutter. The exposed ITO film was removed by immersing in concentrated HCl for 10-20 minutes. Complete removal was confirmed by measuring with an Ohmmeter, confirming insulation. In this design there are three ITO electrodes on the same glass slide.
Figure S1. Cyclic voltammogram of the PB electrode in 3 M KCl (pH 2). The scan rate is 5 mV s\(^{-1}\). An Ag/AgCl element is used as the reference/counter electrode.

Figure S2. (Left) Cyclic voltammogram of PB electrode in a solution of 3 M KCl (pH 2) at different scan rates. (Right) Linear relationship between peak height and scan rate for the PB film.
Figure S3. Anodic and cathodic potentials are imposed (scan rate of 0.5 mV s\(^{-1}\)) to the PB electrode in the detection cell only. (a) Integrated charge of PB film observed for different applied potentials. (b) The relationship of PB absorbance with integrated PB charge.

Figure S4. (Left) Calibration curves of three different potentiometric probes based on the liquid PVC membranes in the flow cell. (Right) Observation of potentiometric time traces (n=3) upon simultaneously changes of K\(^+\) (blue), Na\(^+\) (green) and Ca\(^{2+}\) (red) concentrations.
Figure S5. (Left) Reproducibility of potential-time trace of K-ISE, Na-ISE and Ca-ISE in the sample compartment at high concentrations between 1 and 10 mM of the KCl (blue), NaCl (green) and CaCl$_2$ (red). (Right) Corresponding EMF values of K-ISE, Na-ISE and Ca-ISE (n=3) at each concentration.

Figure S6. Electrochemical perturbation only at Na-ISE probe containing 1 mM NaCl in sample compartment. A constant current amplitude of 0.25 µA for a period of 30-s or 7.5 µC is imposed. The potential (OCP) readout; a) before perturbation, b) during perturbation and c) after perturbation are observed.
Figure S7. (Top) Normalized current responses of the classical BPE of (Left) K⁺-selective BPE, and (Right) Ca²⁺-selective BPE. The scan rate is 1 mV s⁻¹. (Bottom) Corresponding absorbance changes in the detection compartment at each applied potential and with increasing concentration in sample compartment. Error bars are standard deviations (n=3). The absorbance calibration curves are fitted with eq 6.

Figure S8. A relationship between absorbance and logarithmic ion activities of (Left) K-BPE and (Right) Ca-BPE in classical (colored symbols) and multiple BPEs (black symbols) platforms at three different constant applied potentials. The sigmoidal curves are calculated with the Boltzmann equation.
Figure S9. Colorimetric reproducibility of a Prussian Blue film responding to a Na-BPE. Different applied potentials of -150 and -120 mV are imposed with 0.1 mM NaCl in the sample compartment.

Figure S10. Selectivity of K-BPE (Left) and Ca-BPE (Right) in the BPE sensor array. (Left) A constant potential of -100 mV is imposed to the cell, where the sample contains only 1 mM KCl. (Right) A constant potential of -170 mV is imposed, where the sample contains only 1 mM CaCl₂.
Figure S11. Photographs of the multiple cation-selective BPEs array composed of K-BPE (ch1), Na-BPE (ch2) and Ca-BPE (ch3). The absorbance values are observed at a fixed potential, at which the sample solution contains only (a) 1 mM NaCl (E_{app}= -100 mV), (b) 1 mM KCl (E_{app}= -100 mV) and (c) 1 mM CaCl$_2$ (E_{app}= -170 mV).

Figure S12. Observed colorimetric PB absorbances that are plotted on the calibration curves for Na-BPE, K-BPE and Ca-BPE. Quantitative analysis of sodium (left), potassium (middle) and calcium (right) contents in real-world samples are shown using the multiple cation selective BPEs sensor array.
Figure S13. The integrated charge of PB film (anodic peak) with increasing number of cycles, as indicated. The PB film was deposited for 30-s by passing a cathodic current density of 2.0 A m$^{-2}$ through the ITO electrode. For this experiment, the film is in contact with 3 M KCl (pH 2). The potential is applied through the PB electrode by alternating between 0.4 and 0.2 V vs Ag/AgCl.