Supporting information

A Domino Synthetic Strategy for Tetrahydrothiopyran Derivatives from Benzaldehydes, 2-Acetylfuran/2-Acetylthiophene and Sodium Sulfide

Dongdong Chen*, Weixia Du, Xufeng Yang, and Tao Liu*

Department of Chemistry & Chemical Engineering, Lvliang University, Lishi 033001, P. R. China.

*E-mail: chendxy@163.com; Tel: +86 (0)358 2274242.

*E-mail: liutao@llhc.edu.cn; Tel: +86 (0)358 2274242.
Contents

\(^1\)H NMR and \(^{13}\)C NMR spectra of all compounds...S3

HRMS of all compounds ...S58

OPTEP drawing of compound 3aa ..S66
1H NMR (500 MHz, CDCl$_3$) of compound 3aa
13C NMR (125 MHz, CDCl$_3$) of compound 3aa
1H NMR (500 MHz, DMSO-d_6) of compound 3ab
13C NMR (125 MHz, DMSO-d) of compound 3ab
1H NMR (500 MHz, DMSO-d_6) of compound 3ac
13C NMR (125 MHz, DMSO-d) of compound 3ac
$1H$ NMR (500 MHz, CDCl$_3$) of compound 3ad
13C NMR (125 MHz, CDCl$_3$) of compound 3ad
1H NMR (500 MHz, CDCl$_3$) of compound 3ae
13C NMR (125 MHz, CDCl$_3$) of compound 3ae
1H NMR (400 MHz, CDCl$_3$) of compound 3af
13C NMR (100 MHz, CDCl$_3$) of compound 3af
1H NMR (500 MHz, CDCl$_3$) of compound 3ag
13C NMR (125 MHz, CDCl$_3$) of compound 3ag
1H NMR (500 MHz, CDCl$_3$) of compound 3ah
13C NMR (125 MHz, CDCl$_3$) of compound 3ah
1H NMR (500 MHz, CDCl$_3$) of compound 3ai
13C NMR (125 MHz, CDCl$_3$) of compound 3ai
1H NMR (500 MHz, CDCl$_3$) of compound 3aj
13C NMR (125 MHz, CDCl$_3$) of compound 3aj
1H NMR (500 MHz, CDCl$_3$) of compound 3ak
13C NMR (125 MHz, CDCl$_3$) of compound 3ak
1H NMR (500 MHz, CDCl$_3$) of compound 3al
13C NMR (125 MHz, CDCl$_3$) of compound 3al
1H NMR (500 MHz, CDCl$_3$) of compound 3am
13C NMR (125 MHz, CDCl$_3$) of compound 3am
1H NMR (500 MHz, CDCl$_3$) of compound 3an
13C NMR (125 MHz, CDCl$_3$) of compound 3an
\(^1\)H NMR (500 MHz, CDCl\(_3\)) of compound 3ba
13C NMR (125 MHz, CDCl$_3$) of compound $3ba$
1H NMR (500 MHz, DMSO-d_6) of compound 3bb
13C NMR (125 MHz, DMSO-d) of compound 3bb
1H NMR (500 MHz, DMSO-d_6) of compound 3bc
13C NMR (125 MHz, DMSO-d) of compound 3bc
1H NMR (400 MHz, CDCl$_3$) of compound 3bd
13C NMR (100 MHz, CDCl$_3$) of compound 3bd
1H NMR (500 MHz, CDCl$_3$) of compound 3be
13C NMR (125 MHz, CDCl$_3$) of compound 3be
1H NMR (500 MHz, CDCl$_3$) of compound 3bf
13C NMR (125 MHz, CDCl$_3$) of compound 3bf
1H NMR (500 MHz, CDCl$_3$) of compound 3bg
13C NMR (125 MHz, CDCl$_3$) of compound 3bg
1H NMR (500 MHz, CDCl$_3$) of compound 3bh
13C NMR (125 MHz, CDCl$_3$) of compound 3bh
1H NMR (500 MHz, CDCl$_3$) of compound 3bi
13C NMR (125 MHz, CDCl$_3$) of compound 3bi
1H NMR (500 MHz, CDCl$_3$) of compound 3bj
13C NMR (125 MHz, CDCl$_3$) of compound 3bj
1H NMR (400 MHz, CDCl$_3$) of compound 3bk
13C NMR (100 MHz, CDCl$_3$) of compound 3bk
1H NMR (500 MHz, CDCl$_3$) of compound 3bl
13C NMR (125 MHz, CDCl$_3$) of compound 3bl
1H NMR (400 MHz, CDCl$_3$) of compound 3bm
13C NMR (100 MHz, CDCl$_3$) of compound 3bm
1H NMR (400 MHz, CDCl$_3$) of intermediate I of compound 3aa
HR-ESI-MS of compound 3aa

HR-ESI-MS of compound 3ab

HR-ESI-MS of compound 3ac
HR-ESI-MS of compound 3ad

HR-ESI-MS of compound 3ae

HR-ESI-MS of compound 3af

HR-ESI-MS of compound 3ag
HR-ESI-MS of compound 3ah

HR-ESI-MS of compound 3ai

HR-ESI-MS of compound 3aj
HR-ESI-MS of compound 3ak

HR-ESI-MS of compound 3al

HR-ESI-MS of compound 3am

HR-ESI-MS of compound 3an
HR-ESI-MS of compound 3ba

HR-ESI-MS of compound 3bb

HR-ESI-MS of compound 3bc
HR-ESI-MS of compound 3bc

HR-ESI-MS of compound 3be

HR-ESI-MS of compound 3bf

HR-ESI-MS of compound 3bg
HR-ESI-MS of compound 3bh

HR-ESI-MS of compound 3bi

HR-ESI-MS of compound 3bj

HR-ESI-MS of compound 3bk
HR-ESI-MS of compound 3bl

HR-ESI-MS of compound 3bm
OPTEP drawing of compound 3aa and 3bh

Single-crystal X-ray diffraction data was collected at room temperature on a Bruker SMART APEX II (λ = 0.71073 Å). The crystal structures were solved by direct method of SHELXS-2014 and refined by full-matrix least-squares techniques using the SHELXL-2014 program.

Crystal data and OPTEP drawing of compound **3aa** (CCDC 2006752):

![Figure S1. Crystal and molecular structure of 3aa.](image)

Crystal data:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{26}H_{22}O_{4}S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>430.5</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C2</td>
</tr>
<tr>
<td>a (Å)</td>
<td>19.357(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>5.7941(6)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>21.216(2)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>(\beta) (deg)</td>
<td>115.0655(16)</td>
</tr>
<tr>
<td>(\gamma) (deg)</td>
<td>90</td>
</tr>
<tr>
<td>Volume</td>
<td>2155.4(4)</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
</tr>
<tr>
<td>(R)</td>
<td>0.0355</td>
</tr>
<tr>
<td>(wR_2)</td>
<td>0.1223</td>
</tr>
</tbody>
</table>