Supporting Information

A Sensitive Signal Amplifying Diagnostic Biochip Based on Biomimetic Periodic Nanostructure for Detecting Cancer Exosomes

Junli Zhang,†,1 Yifan Zhu,†,1 Jinjin Shi,† Kaixiang Zhang,† Zhenzhong Zhang‡, † and Hongling Zhang†, †,*

†School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
‡Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China
1These authors contributed equally.
*Corresponding author: Hongling Zhang, Email:zhanghongling729@zzu.edu.cn

List of Contents:
1. Figure S1. Characterization of monodisperse polystyrene spheres ..2
2. Figure S2. Characterization of prepared PCs ..3
3. Figure S3. Optimization of test parameters ..4
4. Figure S4. Characterization of QD...4
5. Figure S5. SEM image of exosomes/anti-GPC1/QD on the surface of biochip..................5
6. Figure S6. NTA analysis of different exosomes ...5
7. Figure S7. Detection results of Panc-1 exosomes with different concentrations in serum6
8. Table S1. Results of size and concentration distribution of different exosomes6
Results

Figure S1. Characterization of monodisperse polystyrene spheres. Representative (A) SEM and (B) TEM image and size distribution of monodisperse polystyrene spheres. Scale bar: 200nm. (C) Size distribution (236 ± 2 nm) and (D) zeta potential (-38 ± 6 mV) of the monodisperse polystyrene spheres analyzed by DLS, respectively.
Figure S2 Characterization of prepared PCs. (A) Transmittance spectra of prepared PCs using polystyrene spheres diluted with Milli-Q water in a different ratio. (B) Fluorescent images of prepared PCs using polystyrene spheres diluted with Milli-Q water in a different ratio. (C) Fluorescence intensity corresponding to (B).
Figure S3 Optimization of test parameters. (A) Fluorescence spectra of the same content of QD525 conjugated with anti-GPC1/ biotin at different molar ratios (1:5, 1:10, 1:20, 1:80, 1:160 and 1:640). (B) Fluorescence intensity in different reaction time and temperature.

Figure S4 Characterization of QD. (A) Representative TEM and (B) size distribution of QD. Scale bar: 50 nm.
Figure S5 SEM image of exosomes/anti-GPC1/QD on the surface of biochip. Scale bar: 100 nm.

Figure S6 NTA analysis of the concentration and size of exosomes from Panc-1, B16F10 and MCF10A cells.
Figure S7 Fluorescent images of Panc-1 exosomes with different concentrations in mimetic serum. The concentrations of Panc-1 exosomes were 1.0×10^7, 5.0×10^7, 1.0×10^8, 5.0×10^8 and 1.0×10^9 particles/mL. (B) The linear relationship between fluorescence intensity and concentration of Panc-1 exosomes in serum ranging from 1.0×10^7 to 1.0×10^9 particles/mL. Error bars represent the standard deviation of three replicate experiments.

Table S1 Results of size and concentration distribution of exosomes (dilution 100-fold with PBS) from Panc-1, B16F10 and MCF-10A cell lines.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Size (nm) Mean ± SD</th>
<th>Concentration (particles/mL) Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panc-1 Exo</td>
<td>150 ± 5</td>
<td>$4.4 \times 10^8 \pm 6.1 \times 10^7$</td>
</tr>
<tr>
<td>B16F10 Exo</td>
<td>119 ± 5</td>
<td>$5.6 \times 10^8 \pm 2.8 \times 10^7$</td>
</tr>
<tr>
<td>MCF-10A Exo</td>
<td>94 ± 1</td>
<td>$9.8 \times 10^8 \pm 1.1 \times 10^8$</td>
</tr>
</tbody>
</table>