Effective Optical Diffuser Based on Interfacial Hydrogen-bonding Polymer Complexation

Feng Lin, Liping Zhu, Shuguang Yang*

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620

*To whom correspondence should be addressed: shgyang@dhu.edu.cn

Figure S1 Photographs of (PVPON/PAA)$_n$ films (n = 10, 20, 30, 40, 60, and 80).
Figure S2 The photographs of CNP solution before (left) and after standing for 24 h (right).

Figure S3 The size distribution of the CNP in the solution.

The size of CNP in solution was characterized via dynamic light scattering (DLS, BI-200SM, Brookhaven) at room temperature.
Figure S4 QCM monitoring the LbL assembly of PVPON/PAA and PVPON/CNP film.

(Quartz crystal microbalance with dissipation (QCM-D, QCM Explore, Biolin) was used to study the growth behaviors of PVPON/PAA and PVPON/CNP. The Au-coated QCM-D sensors were immersed in mercaptoacetic acid aqueous solution (10 mmol) overnight before using and then dried with a stream of N2 after washed with DI water. PVPON solution and PAA (or CNP solution) are both diluted to 0.5 mg/mL and then were alternately pumped into cell for 10 min, each followed by pumping water for 10 min.)
Figure S5 The thickness of the films as a function of the assembly cycles. The SEM images of the cross-section of (PVPON/PAA)$_{40}$ and (PVPON/CNP)$_{40}$ film.

Figure S6 Photographs of (PVPON/CNP)$_n$ films ($n = 10, 20, 30, 40, 60$, and 80).
Figure S7 SEM images of the (PVPON/CNP)$_n$ films ($n = 10$, 20, 30, 40, 60, and 80).