Supporting Information for:

Why Oxygen Increases Carrier Lifetimes but Accelerates Degradation of CH$_3$NH$_3$PbI$_3$ Under Light Irradiation: Time-Domain Ab Initio Analysis

Jinlu He1, Wei-Hai Fang1, Run Long1*, Oleg V. Prezhdo2

1College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China

2Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States

We estimated the radiative lifetimes for the pristine MAPbI$_3$, O$_2$, O$_2^{-1}$ and O$_2^{-2}$ systems by calculating the Einstein coefficient of spontaneous emission, A_{21}, between VBM and CBM

$$A_{21} = \frac{8\pi^2\nu_2^2\epsilon^2}{\epsilon_0 m_e c^3} g_2 f_{12}$$

Here, ϵ_0, m_e, ϵ, and c are the fundamental constants, ν is the transition frequency, g_l is degeneracy of state l, and f_{12} is the oscillator strength between states 1 and 2.

The radiative lifetime is inverse of the Einstein coefficient:

* Corresponding author, E-mail: runlong@bnu.edu.cn
$$\tau_{21} = [A_{21}]^{-1} = \frac{\varepsilon_0 m e^3 g_2}{8\pi^2 v^2_{21} e^2 g_1 f_{12}} = \frac{\varepsilon_0 m e^3}{8\pi^2 v^2_{21} e^2 f_{12}}$$

We assume that, \(g_1 = g_2 = 1 \) because thermal atomic fluctuations destroy the system symmetries.

Table S1. Spin-up Caniocularly Averaged Bandgap, Absolute Value of NA Coupling, Pure-Dephasing Time, Nonradiative Electron–Hole Recombination Time and Radiative Lifetime for the VBM-CBM Transition in the Pristine MAPbI₃, O₂, O₂⁻¹ and O₂⁻² systems.

<table>
<thead>
<tr>
<th></th>
<th>Bandgap (eV)</th>
<th>NA coupling (meV)</th>
<th>Dephasing (fs)</th>
<th>Recombination (ns)</th>
<th>Radiative lifetime (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPbI₃</td>
<td>1.65</td>
<td>0.70</td>
<td>11.04</td>
<td>2.12</td>
<td>7.02</td>
</tr>
<tr>
<td>O₂</td>
<td>1.66</td>
<td>1.23</td>
<td>14.59</td>
<td>1.22</td>
<td>3.29</td>
</tr>
<tr>
<td>O₂⁻¹</td>
<td>1.61</td>
<td>1.34</td>
<td>2.25</td>
<td>0.66</td>
<td>2.61</td>
</tr>
<tr>
<td>O₂⁻²</td>
<td>1.65</td>
<td>0.55</td>
<td>9.88</td>
<td>4.70</td>
<td>8.57</td>
</tr>
</tbody>
</table>
Figure S1. Spin-up projected densities of states (PDOS) and charge densities of the VBM and CBM in the pristine MAPbI$_3$, O$_2$, O$_{2^{-1}}$ and O$_{2^{-2}}$ systems. The presence of various oxygen species does not create deep trap states within the fundamental bandgap in the spin-up channel. The increased VBM-CBM overlap in the neutral oxygen (b) and superoxide (c) systems leads to stronger NA coupling and faster electron-hole recombination. In contrast, the decreased VBM-CBM overlap in the peroxide system (d) reduces the NA coupling and slows charge recombination.
Figure S2. Spin-polarized projected densities of states (PDOS) of the pristine MAPbI₃, O₂, O₂⁻¹ and O₂⁻² systems, including simultaneously spin-up and spin-down projections.
Figure S3. Projected densities of states (PDOS), top, and charge densities, bottom, of key states involved in charge trapping and recombination in the O_2, O_2^-, and O_2^{-2} systems, obtained using GW+SOC with a 48-atom MAPbI$_3$ supercell.
Figure S4. Electron–hole recombination dynamics for the spin-up channel in the pristine MAPbI$_3$, O$_2$, O$_2^{-1}$ and O$_2^{-2}$ systems. Similarly to the spin-down channel, neutral oxygen molecule and superoxide accelerate charge recombination, while peroxide slows it down.