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General Methods and Materials for Synthesis

'H, C, DEPT and gHSQCAD NMR spectra were recorded on an Agilent 400 spectrometer at
25 °C. In the *H and *C NMR spectra chemical shifts (8/ppm) are referenced to the residual
solvent peak: CDCls, 7.26 ppm (*H NMR), 77.2 ppm (**C NMR); DMSO-ds, 2.50 ppm (H
NMR), 39.5 ppm (*3C NMR spectra). HRMS were obtained using an Agilent 1290 Infinity LC
system tandem to an Agilent 6520 accurate mass Q-TOF LC/MS with an APCI source in
positive mode. Thin-layer chromatography to monitor the reactions was performed on silica gel
plates (Merck Kieselgel 60, F2ss). The spots were made visible with UV light. Column
chromatography was performed with silica gel (Merck silica 60). All chemicals and solvents
[dimethylformamide (DMF), dichlormethane (DCM), methanol (MeOH), ethyl acetate
(EtOAC), hexane] were purchased from commercial suppliers and used as received, unless
stated otherwise. Tetrahydrofuran (THF) was distilled over Na/benzophenone and acetonitrile
(MeCN) was distilled over CaHa.

S3



Synthesis of Compounds FL-DTE and FL-m
Synthesis of Compound FL-DTE

BrNoz i, erHz_i. BrH\/

e vesstac

Scheme S1. Synthesis of compound FL-DTE. Reagents and conditions: (i) Fe powder,
EtOH/H20, reflux, 2 h, N; (ii) Etl, K.CO3, DMF, 80 °C, 4 h; (iii) step 1. tert-BuLi, THF, -78
°C, Ar; step 2. DMF; (iv) NaoHPOg4, Nal, MeCN, reflux, 18 h, Ar; (v) Pd(PPh3).Cl,, PPhs, Cul,
piperidine, THF, rt, 22 h, Ar.

7-Bromo-9,9-dimethyl-9H-fluoren-2-amine (M2)

Br 0.0 NH,

7-Bromo-9,9-dimethyl-9H-fluoren-2-amine (M2) was prepared by reduction of 2-bromo-9,9-
dimethyl-7-nitro-9H-fluorene (M1) with iron powder in EtOH/H20 according to a literature
procedure.! The *H NMR data are consistent with the reported ones.
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IH NMR (400 MHz, DMSO-de) 6 7.62 (d, J = 1.6 Hz, 1H; Ar-H), 7.49 (d, J = 8.0 Hz, 1H; Ar-
H), 7.45 (d, J = 8.4 Hz, 1H; Ar-H), 7.38 (dd, J = 8.0, 2.0 Hz, 1H; Ar-H), 6.65 (d, J= 2.0 Hz,
1H; Ar-H), 6.53 (dd, J= 8.4, 2.0 Hz, 1H; Ar-H), 5.31 (s, 2H; NH2), 1.35 (s, 6H; C(CH3)2) ppm.
13C NMR (101 MHz, DMSO-ds) 6 154.7 (Cquat), 154.6 (Cauat), 149.3 (Cquat), 139.1 (Cquar), 129.5
(CH), 125.5 (CH), 125.46 (Cquar), 121.1 (CH), 119.8 (CH), 117.4 (Cqua), 112.9 (CH), 107.7
(CH), 46.3 (Cquat, C(CHs)2), 27.0 (2C; C(CHs)2) ppm.

7-Bromo-N-ethyl-9,9-dimethyl-9H-fluoren-2-amine (M3)

Br 0.0 N

In analogy to a literature procedure,! ethyl iodide (2.03 g, 13 mmol, 1 equiv.) was added to 7-
bromo-9,9-dimethyl-9H-fluoren-2-amine (M2) (3.74 g, 13 mmol, 1 equiv.) and K.CO3 (1.80 g,
13 mmol) in DMF (30 mL). The reaction mixture was heated at 80 °C for 5 h. After cooling,
the mixture was poured into H20 and extracted with DCM. The organic phase was washed with
H20, dried (over Na2SOs4), and concentrated. The oily crude product was purified by flash
chromatography (SiO2, EtOAc/hexane, 1:4) to afford M3 as a white solid (2.34 g, yield 57%).

'H NMR (400 MHz, DMSO-ds) 6 7.61 (d, J = 2.0 Hz, 1H; Ar-H), 7.50 (d, J = 8.0 Hz, 2H; Ar-
H), 7.38 (dd, J = 8.0, 2.0 Hz, 1H; Ar-H), 6.65 (d, J = 2.0 Hz, 1H; Ar-H), 6.53 (dd, /= 8.0, 2.0
Hz, 1H; Ar-H), 5.77 (t, J = 5.6 Hz, 1H; NH), 3.09 (dq, J = 5.6, 7.2 Hz, 2H; CH,CHs), 1.37 (5,
6H; C(CHz3)2), 1.18 (t, /= 7.2 Hz, 3H; CH>CH3) ppm.

13C NMR (101 MHz, CDCls) 6 155.3 (Cquat), 154.9 (Cquat), 148.8 (Cquat), 139.1 (Cquar), 130.0
(CH), 127.9 (Cquar), 125.9 (CH), 121.2 (CH), 119.9 (CH), 118.8 (Cquar), 111.9 (CH), 106.8 (CH),
47.0 (Cquat, C(CH3)2), 38.8 (CH2CHs3), 27.4 (2C; C(CHa)2), 15.0 (CH2CHa) ppm.
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7-(Ethylamino)-9,9-dimethyl-9H-fluorene-2-carbaldehyde (M4)
H
Ea TR AL
M4

A flask was charged with 7-bromo-N-ethyl-9,9-dimethyl-9H-fluoren-2-amine (M3) (0.90 g,
2.85 mmol), evacuated, and purged with Ar. Freshly distilled THF (40 mL) was added to the
flask. To the light-yellow solution tert-BuL.i (5.36 mL of 1.7 M solution in pentane, 9.12 mmol,
3.2 equiv.) was added dropwise at -78 °C. After the solution was stirred for 1 h, DMF (0.208
mg, 0.219 mL, 2.85 mmol, 1 equiv.) was added dropwise. The solution was stirred for additional
2 h at -78 °C and allowed to warm to room temperature for 1 h. H>O was added to quench the
reaction. The solution was extracted with EtOAc twice. The combined organic phase was dried
(over Na2S04) and concentrated under reduced pressure. The crude product was purified by
flash chromatography (SiO2, EtOAc/hexane, 1:4) to afford M4 as a light yellow solid (0.43 g,
yield 56%).

IH NMR (400 MHz, CDCls) 6 9.99 (s, 1H, CHO), 7.89 (d, J = 0.8 Hz, 1H; Ar-H), 7.78 (dd, J
= 8.0, 1.6 Hz, 1H; Ar-H), 7.65 (d, J = 8.0 Hz, 1H; Ar-H), 7.58 (d, J = 8.4 Hz, 1H; Ar-H), 6.65
(d, J=2.4 Hz, 1H; Ar-H), 6.60 (dd, J = 8.4, 2.0 Hz, 1H; Ar-H), 3.94 (br s, 1H; NH), 3.25 (q, J
= 7.2 Hz, 2H; CH,CHs), 1.48 (s, 6H; C(CHs)z), 1.30 (t, J = 7.2 Hz, 3H; CH2CHs) ppm.

13C NMR (101 MHz, CDCls) 6 192.2 (CHO), 157.5 (Cquat), 153.4 (Cquat), 150.0 (Cquar), 146.9
(Cquat), 133.8 (Cquar), 131.3 (CH), 127.1 (Cquar), 122.59 (CH), 122.57 (CH), 118.5 (CH), 112.2
(CH), 106.4 (CH), 46.7 (Cquat, C(CHs)), 38.6 (CH2CHs), 27.3 (2C; C(CHa)2), 14.9 (CH2CHs)
ppm.

Bromo-N-4-iodophenylacetamide (M5)
0
O
Br ”
M5

Bromo-N-4-iodophenylacetamide (M5) was prepared according to a literature procedure.?
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2-(Ethyl(7-formyl-9,9-dimethyl-9H-fluoren-2-yl)amino)-N-(4-iodophenyl)acetamide
(M6)

OHCN;/Z) )

In analogy to a literature procedure,® a flask was charged with 7-(ethylamino)-9,9-dimethy!I-
9H-fluorene-2-carbaldehyde (M4) (79 mg, 0.3 mmol, 1 equiv.), 2-bromo-N-4-
iodophenylacetamide (M5) (102 mg, 0.3 mmol, 1 equiv.), Na2HPO4 (43 mg, 0.3 mmol, 1
equiv.), and Nal (18 mg, 0.12 mmol, 0.4 equiv.), evacuated, and purged with Ar. Freshly
distilled MeCN (5 mL) was added to flask. The mixture was refluxed for 18 h under Ar. EtOAc
(100 mL) was added to the brown reaction mixture solution, which then was washed with H.0
(3 x 50 mL) and brine (50 mL). The organic phase was dried (over Na,SO4) and concentrated
under reduced pressure. The crude product was purified by flash chromatography (SiO,
EtOAc/hexane, 1:4) to afford M6 as a light yellow solid (118 mg, yield 75%).

IH NMR (400 MHz, DMSO-ds)  10.19 (s, 1H, NH), 9.94 (s, 1H, CHO), 7.93 (d, J = 0.8 Hz,
1H: Ar-H), 7.81 (dd, 7 = 8.0, 1.6 Hz, 1H; Ar-H), 7.77 (d, J = 7.6 Hz, 1H; Ar-H), 7.70 (d, J =
8.4 Hz, 1H; Ar-H), ), 7.65 (m, 2H; Ar-H), 7.46 (m, 2H; Ar-H), 6.87 (d, /= 2.0 Hz, 1H; Ar-H),
6.65 (dd, /= 8.8, 2.4 Hz, 1H; Ar-H), 4.21 (s, 2H; CH2CO), 3.57 (g, /= 6.8 Hz, 2H; CH>CHy),
1.41 (s, 6H; C(CHs)2), 1.19 (t, J = 6.8 Hz, 3H; CH2CH3) ppm.

13C NMR (101 MHz, DMSO-ds) 6 192.1 (CHO), 168.9 (Cquat), 156.7 (Cquat), 152.9 (Cquat), 149.4
(Cquat), 146.0 (Cquat), 138.6 (Cquat), 137.4 (2C; CH), 133.4 (CH), 130.5 (CH), 125.2 (Cquat),
122.54 (CH), 122.49 (CH), 121.6 (2C; CH), 118.5 (CH), 111.1 (CH), 105.6 (CH), 86.9 (Cquat),
53.9 (CH2CO0), 46.2 (Cquat, C(CHs3)2), 45.9 (CH2CHs), 26.9 (2C; C(CHs)2), 12.1 (CH2CHs) ppm.
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2-(Ethyl(7-formyl-9,9-dimethyl-9H-fluoren-2-yl)amino)-N-(4-((4-(4-(3,3,4,4,5,5-
hexafluoro-2-(5-(4-methoxyphenyl)-2-methylthiophen-3-yl)cyclopent-1-en-1-yl)-5-
methylthiophen-2-yl)phenyl)ethynyl)phenyl)acetamide (FL-DTE)

R F

e Fy O -

In analogy to a literature procedure4 a dry flask was charged with 2-(ethyl(7-formyl-9,9-

dimethyl-9H-fluoren-2-yl)amino)-N-(4-iodophenyl)acetamide (M6) (79 mg, 0.15 mmol, 1
equiv.), Cul (3 mg, 0.15 mmol, 0.1 equiv.), Pd(PPh3)2Cl2 (12 mg, 0.015 mmol, 0.1 equiv.), and
PPhsz (4 mg, 0.02 mmol, 0.1 equiv.). The flask was evacuated and purged with Ar. Freshly
distilled THF (5 mL) bubbled with Ar and dry piperidine (0.4 mL) bubbled with Ar were added
through a septum. After 15 min 1-[5'-(4"-methoxyphenyl)-2'-methylthien-3'-yl]-2-[2'-methyl-
5'-(4"-ethynylphenyl)thien-3'-yl]-3,3,4,4,5,5-hexafluorocyclopentene (DTE-m)® (115 mg, 0.2
mmol, 1 equiv.) was added. The reaction mixture was stirred at room temperature for 22 h under
Ar. Then the reaction solution was concentrated under reduced pressure. The residue was
dissolved in DCM (100 mL), washed with H>O (2 x 50 mL), dried (Na2S0O4), and concentrated
under reduced pressure. The crude product was purified by chromatography (SiO,
EtOAc/DCM, 2:98) to afford FL-DTE (130 mg, yield 90%).

'H NMR (400 MHz, CDCls) 6 10.01 (s, 1H, CHO), 8.31 (s, 1H; NH), 7.91 (dd, J = 1.6, 0.2 Hz,
1H; Ar-H), 7.82 (dd, /= 8.0, 1.6 Hz, 1H; Ar-H), 7.74-7.68 (m, 2H; Ar-H), 7.54-7.43 (m, 10H;
Ar-H), 7.31 (br s, 1H; Thiophene-H), 7.15 (br s, 1H; Thiophene-H), 6.94-6.88 (m, 2H; Ar-H),
6.85 (d, J=2.4 Hz, 1H; Ar-H), 6.81 (dd, /= 8.4, 2.4 Hz, 1H; Ar-H), 4.07 (s, 2H; CH>CO), 3.84
(s, 3H; OCHsa), 3.64 (q, /= 7.2 Hz, 2H; CH>CH?3), 1.97 (s, 3H; CH3), 1.95 (s, 3H; CH3), 1.49
(s, 6H; C(CHa)2), 1.33 (t, /= 7.2 Hz, 3H; CH2CH3) ppm.

13C NMR (101 MHz, CDCls) § 192.2 (CHO), 168.8 (CONH), 159.7 (Cquat), 157.57 (Cquat),
153.7 (Cquat), 148.9 (Cquat), 145.9 (Cquat), 142.4 (Cquat), 142.0 (Cquat), 141.6 (Cquat), 140.5 (Cquat),
137.3 (Cquat), 134.6 (Cquat), 133.2 (Cquat), 132.6 (2C; CH), 132.3 (2C; CH), 131.2 (CH), 129.2
(Cquat), 127.1 (2C; CH), 126.3 (Cquat), 126.3 (Cquat), 125.8 (Cquat), 125.5 (2C; CH), 123.1 (CH),
122.9 (CH), 122.84 (CH), 122.77 (Cquat), 121.4 (CH), 119.9 (2C; CH), 119.4 (Cquat), 119.2
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(CH), 114.6 (2C; CH), 113.2 (CH), 107.8 (CH), 90.4 (Cquat), 89.2 (Cquat), 57.1 (CH2CO), 55.6
(OCHgs), 47.1 (Cquat, C(CHa)z2), 46.9 (CH2CHs3), 27.3 (2C; C(CHzs)2), 14.8 (CHz3), 14.7 (CHs),
11.8 (CH2CHs) ppm. (Note: the carbons on the perfluropentene ring are not reported due to the
very low intensities).

HRMS (Q-TOF, ESI*, m/z): found [M + H]* = 971.2701; calcd for [M + H]* (CssH4FsN203S>)
=971.2770.

Synthesis of 2-(ethyl(7-formyl-9,9-dimethyl-9H-fluoren-2-yl)amino)-N-phenylacetamide
(EL-m)

O
B/\WOH HoN i /( /@ OHC 0.0 N
r +
O —— -
M7 M4

., OHc;Nj< H@

FL-m
Scheme S2. Synthesis of compound FL-m. Reagents and conditions: (i) EDC-HCI, DCM, RT,;
(if) Na2HPOs, Nal, MeCN, reflux, 18 h, Ar.
2-Bromo-N-phenylacetamide (M7)

f/?
Br H/®
M7

Compound M7 was prepared according to a literature procedure.® The 'H NMR data are

consistent with the reported ones.
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2-(Ethyl(7-formyl-9,9-dimethyl-9H-fluoren-2-yl)amino)-N-phenylacetamide (FL-m)

Py O

In analogy to a literature procedure® a mixture of 7-(ethylamino)-9,9-dimethyl-9H-fluorene-2-
carbaldehyde (M4) (86 mg, 0.33 mmol, 1 equiv.), 2-bromo-N-phenylacetamide (M7) (106 mg,
0.5 mmol, 1.5 equiv.), NazHPOg4 (71 mg, 0.5 mmol, 1.5 equiv.), and Nal (20 mg, 0.13 mmol,
0.4 equiv.) was added to a flask, evacuated, and purged with Ar. Freshly distilled MeCN (5 mL)
was added to flask. The mixture was refluxed for 18 h under Ar. The organic phase was diluted
with DCM, washed with H-O, dried (over Na2SQO4), and concentrated under reduced pressure.
The crude brown oil was purified by flash chromatography (SiO2, EtOAc/DCM, 1:4) to afford
compound FL-m as a yellow solid (78 mg, yield 59%).

'H NMR (400 MHz, CDCl3) 6 10.00 (s, 1H, CHO), 8.23 (s, 1H; NH), 7.90 (d, J = 0.8 Hz, 1H;
Ar-H), 7.81 (dd, J = 8.0, 1.6 Hz, 1H; Ar-H), 7.75-7.65 (m, 2H; Ar-H), 7.50-7.43 (m, 2H; Ar-
H), 7.34-7.27 (m, 2H; Ar-H), 7.13-7.08 (m, 1H; Ar-H), 6.85 (d, J= 2.4 Hz, 1H; Ar-H), 6.81 (dd,
J=8.4,2.4 Hz, 1H; Ar-H), 4.06 (s, 2H; CH,CO), 3.63 (q, J = 7.2 Hz, 2H; CHCHs), 1.48 (s,
6H; C(CHs)2), 1.32 (t, J= 7.2 Hz, 3H; CH2CH3) ppm.

13C NMR (101 MHz, CDCls) ¢ 192.2 (CHO), 168.6 (Cquat), 157.5 (Cquat), 153.7 (Cquat), 149.0
(Cquat), 146.0 (Cquat), 137.2 (Cquat), 134.5 (Cquar), 131.2 (CH), 129.2 (2C, CH), 128.9 (Cquat),
125.0 (CH), 122.9 (CH), 122.8 (CH), 120.3 (2C; CH), 119.2 (CH), 113.1 (CH), 107.6 (CH),
57.0 (CH2CO), 47.1 (Cquat, C(CHs)2), 46.8 (CH2CHs), 27.3 (2C; C(CHs)2), 11.9 (CH2CHs) ppm.
HRMS (Q-TOF, ESI*, m/z): found [M + H]~ = 399.2075; calcd for [M + H]~ (C2sH26N202) =
399.2067.
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Figure S1. *H NMR spectrum (400 MHz, DMSO-ds) of compound M2.
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Figure S16. HRMS of compound FL-DTE.
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Figure S21. HRMS of compound FL-m.

One-Photon Spectroscopic Measurements

Spectroscopic grade methanol was used for all the photophysical measurements. The
experiments were performed at room temperature with aerated and optically diluted methanol
solutions, contained in a quartz cuvette of 1 cm pathlength.

The UV/vis absorption spectra were recorded using a Varian CaryBio 50 UV/vis
spectrophotometer. Steady-state fluorescent measurements were recorded on a SPEX
Fluorolog-3 spectrofluorometer (JY Horiba) or a Varian Cary Eclipse spectrofluorometer.

The fluorescence quantum vyields (&5) were determined according to literature procedure.’
Coumarin 153 in ethanol (&+ = 0.38) was employed as the reference in all cases.

Fluorescence lifetimes were determined using a time-correlated single-photon-counting (TC-
SPC) setup. The excitation light (lexc = 377 nm) was provided at a repetition rate of 20 MHz by
a diode laser (LDH-P-C-375) powered by a PDL 800B pulsed diode driver (Picoquant, GmbH
Germany). The emitted photons were collected at the magic angle (54.7°) at around the
emission maxima by a thermoelectrically cooled microchannel plate photomultiplier tube
(R3809U-50, Hamamatsu). The signal was digitalized using a multi-channel analyzer with 4096
channels (SPC-300, Edinburgh Analytical Instruments) and to ensure good statistics 10000
counts were recorded in the top channel. The measured fluorescence decays were fitted after

deconvolution of the data with the instrument response function (IRF).
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UV/vis and Fluorescence Spectra in One-Photon Conditions

- 1.0
FL-m
40000 —— DTEo-m
DTEc-m
30000 -
4 g
5
L05 =
= 20000 - 5
® o
=
10000 -
0 T T T T T T T T T T T 0.0
200 300 400 500 600 700 800

Wavelength (nm)

Figure S22. Absorption spectra (solid lines) of the model compounds in methanol (FL-m,

orange line; DTEo-m, blue line; DTEc-m, green line). In addition the emission spectrum of
FL-m is shown as dashed orange line.
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Figure S23. Absorption spectra (solid lines) of the dyad in both isomeric forms in methanol

(FL-DTEo, black line; FL-DTEc, red line). The FL-DTEo emission spectrum is shown as
dashed black line.
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FRET and TD-DFT Calculations

Calculations were made with the Gaussian 16.A.03 package.® FL-DTEc geometrical
parameters at the ground state (So) were optimized by means of density-functional theory
(DFT), employing the Coulomb attenuated CAM-B3LYP® functional with first a 6-31+G(d)
basis set and then fine-tuned with a 6-311+G(d,p) basis set. The solvent effects, methanol in
this case, were accounted by including the Polarizable Continuum Model (PCM).%° The absence
of negative frequency in analytical Hessian calculations corroborated the nature of the
minimum. The center-to-center distance between the two chromophores was determined as 22
A

> ¢
¢ \/;\i f’/
1

Figure S24. Optimized structure of the FL-DTEc dyad.

According to Forster theory,*! the overlap integral (J) was calculated by using ale - UV-Vis-IR
Spectral Software,* returning a value of 1.54 x 10% nm* M cm™. Assuming the orientation
factor («?) as 2/3, the critical Forster radius (Ro) was calculated as 48 A. Hence, the FRET
efficiency was estimated as practically quantitative (@rret = 0.99).

The absorption energies were computed as vertical electronic excitations from the minima of
the So structures, using the linear-response (LR) approach with the time-dependent density
functional response theory (TD-DFT).** This calculation was performed with the
abovementioned functional and the 6-311+G(d,p) basis set for the ten first excited states.
Natural Transition Orbitals (NTO),** which better describe the electronic movements in the
electronic transitions, were represented. The transitions to the first (S1) and the third (Ss) excited
state were assigned to the absorptions of the DTEc and the FL moieties, respectively. The NTOs
of these transitions are completely centered in the different chromophoric units that compose

the dyad, thus, indicating the absence of electronic interactions among them.
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Transition (NTO weight) NTO Hole NTO Electron

- v%ﬁ - .s‘d
So— S1 (92%) o ‘,,»-{,.} : e, :

s gt T

x e
Table S1. NTO of FL-DTEc.

Transition Etheo,LR Eexp .
Contributions
(osc. strength) eV (nm) eV (nm)
So— S (0.855) 2.13 (581.81) 2.07 (600) HOMO—LUMO (92%)
HOMO-1—-LUMO+1
So— S3(1.016) 3.48 (356.79) 3.37 (368)
(87%)

Table S2. Calculated electronic and photophysical data for FL-DTECc.

From these transitions, dipole moment transitions (M) were used to correct x2. This was

calculated as x? = (Cosfap — 3 COSOa COSOb) = 1.4844 (see Figure S25).

Figure S25. Dipole transitions moments abovementioned for FL-DTEc (left) and respective

angles with the center-to-center vector.

Although this correction of the orientation factor yields a slightly higher and more accurate
critical Forster radius of 53 A, it does not imply any substantial change for the prediction of a

quantitative FRET (®rreT = 1).
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Atomic Coordinates for the Optimized Ground State of FL-DTEc
PCM(methanol)/CAM-B3LYP/6-31+G(d) level of theory

Energy (Hartree)

-3889.658667

Imaginary freq.

0

Coordinates (A)

Atomic type X Y Z
1 C 8.10914 -1.92825 0.84321
2 C 9.37701 -1.24084 0.65531
3 C 8.14163 0.56019 -0.47887
4 C 6.97427 0.22397 0.47493
5 C 6.92672 -1.29044 0.68921
6 C 8.35091 -3.34282 1.24881
7 C 9.88164 -3.54347 1.06115
8 C 10.48406 -2.1141 1.12932
9 C 9.44061 -0.0088 0.09795
10 C 10.55216 0.872 -0.08381
11 H 11.56962 0.57608 0.13943
12 C 10.21509 2.13134 -0.46873
13 C 7.96566 -0.02795 -1.89556
14 H 8.8609 0.17741 -2.48669
15 H 7.82451 -1.11099 -1.84848
16 H 7.1059 0.41422 -2.40079
17 C 7.10408 0.88836 1.86221
18 H 7.04626 1.97497 1.78525
19 H 6.29386 0.54129 2.50733
20 H 8.05552 0.62143 2.33001
21 S 8.47257 2.37115 -0.66178
22 C 11.12785 3.24997 -0.71124
23 C 12.48575 3.0239 -0.9642
24 C 10.67656 4.58055 -0.69552
25 C 13.37047 4.07246 -1.18284
26 H 12.86654 2.00917 -1.01164
27 C 11.54538 5.63382 -0.91022
28 H 9.63173 4.80011 -0.49751
29 C 12.90123 5.3884 -1.15467
30 H 14.41185 3.85232 -1.38159
31 H 11.19274 6.65973 -0.89051
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34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
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65
66
67
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69
70
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13.67671
15.06574
15.47948
15.55373
15.2254
5.58856
5.36253
4.64582
5.30217
3.20293
2.60015
2.39164
1.24099
3.1958
1.03024
2.82676
0.43319
0.79167
0.42007
-0.97056
-2.16144
10.41479
10.11176
11.63072
10.84047
8.03864
7.6533
-3.56726
-4.17037
-4.37752
-5.53244
-3.56361
-5.74547
-3.92879
-6.33502
-5.98175
-6.35423
-7.71029
-8.70409

6.48008
6.29572
7.29545
5.79972
5.71585
-1.79972
-2.82274
-0.92231
0.64765
-1.1665
-2.1963
-0.38317
-2.44038
-2.80227
-0.62304
0.4178
-1.65679
-3.2373
-0.00872
-1.90265
-2.10742
-4.38478
-4.05217
-2.03437
-1.86515
-3.57639
-4.2675
-2.34476
-3.39518
-1.53328
-3.61802
-4.03761
-1.75038
-0.71606
-2.80058
-4.43559
-1.11242
-3.09444
-2.47026

-1.35645
-1.60701
-1.732
-0.76196
-2.52162
0.71924
0.99433
0.29139
-0.19667
0.191
0.92944
-0.64104
0.83203
1.60344
-0.74293
-1.23063
-0.00766
1.41519
-1.39653
-0.10552
-0.18914
1.96564
-0.17285
0.40591
2.43327
2.56284
0.53254
-0.28708
0.4218
-1.09109
0.32516
1.05137
-1.19265
-1.64656
-0.4812
0.88211
-1.8161
-0.52414
-1.22096



71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
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-7.99018
-8.53931
-10.06945
-10.03379
-10.1966
-11.18948
-11.81366
-11.64891
-12.89677
-11.29031
-11.43905
-10.22074
-11.81928
-11.61407
-11.01001
-12.6722
-11.45027
-10.1824
-13.10225
-13.14598
-12.50465
-10.95895
-14.21867
-13.1668
-14.17292
-12.9449
-14.95705
-13.73487
-12.16826
-14.74015
-15.73941
-13.58597
-13.91868
-12.95517
-13.8892
-14.69641
-15.57759
-15.57163
-15.8117

-3.8981
-1.48119
-3.16012
-4.06931
-3.49465
-2.37097
-2.70413
-3.77135
-2.58275

-1.9112
-0.83582
-2.08628
-2.21829
-1.29015
-0.98635
-0.46186

0.0707
-1.57904
0.58829
-0.63536

0.8653
0.26589
1.58179
2.02472
2.45758
2.68578
3.54772
3.77908
2.35236

4.2157
3.89797
4.31169

2.397

2.90977
1.74291
3.14953

0.8757
0.20148
0.28836

0.02569
-1.92018
-1.06825
-1.67505
-0.03089
-1.4995
-2.77706
-2.94804
-2.68195
-3.97296
-3.83795
-4.11644
-4.8817
-0.74738
0.49683
-1.18694
1.28014
0.86534
-0.39791
-2.14504
0.83928
2.22952
-0.69707
1.43097
0.54831
2.64251
0.87261
2.964
3.32445
2.08836
0.20232
3.89795
-1.96607
-1.88787
-2.84354
-2.13236
-0.83683
-1.69944
0.05632



110 H -16.3781 1.60756 -0.98669
111 C -15.58151 5.36936 2.41981
112 ) -15.49613 6.03546 3.4413
113 H -16.34435 5.62801 1.66127

Isomerization Quantum Yield Determination

The isomerization quantum yields were determined according to standard procedures by using
furylfulgide (Aberchrome 540™) as actinometer.'® The ring-opening reactions were triggered
using 523 nm from a LED (LZ4-00G108-0000). The closing reactions were carried out with a
302 nm handheld lamp (UVP 34004401). The absorbance changes in the dyad were monitored
at 592 nm and compared to those of the reference compound at 494 nm under identical
irradiation power/geometries. The molar absorption coefficients of either the dyad and the
reference compound, at 302 nm for the open isomers and at 523 nm for the closed isomers,
were used to correct the isomerization quantum yields of the closing and the opening reactions,

respectively.

Two-Photon Fluorescence Microscopy

The fluorescence properties of the compounds were analyzed using a ZEISS LSM710 NLO
MP/Confocal Microscope at the Centre of Cellular Imaging at Gothenburg University. This
microscope is equipped with an InSight DS+ laser (Spectra-Physics) tunable between 680 nm
and 1300 nm. The provided pulse width was 100 ps. Imaging was performed using a Plan-
Apochromat 10x objective (NA 0.45) focused at the air/liquid boundary, allowing the
simultaneous detection of sample and background fluorescence. Emission spectral data for
compound and background regions of interest (ROIs) were registered using ImageJ software.
All compounds were dissolved in spectroscopic grade methanol and diluted to a concentration
of 10 uM. Emission spectra were measured in a laser power regime where the fluorescence was
proportional to the square of the laser excitation power and using a dynamic 10 nm wide
emission detection window moving in 25 steps between 445 and 700 nm.

The two-photon absorption cross-sections (o2pa) Were determined between 700 and 1000 nm
by the two-photon-induced-fluorescence method.'® Rhodamine B (5 uM in methanol) was used
as a reference under experimentally identical conditions, assuming that the fluorescence

quantum yield is the same regardless of whether two-photon or one-photon excitation is used.
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Additional Two-Photon Absorption Data of Compounds FL-DTEo and FL-m
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Figure S26. One-photon absorption (left) and fluorescence (right) spectra of FL-m (black solid
lines); 10 uM in methanol. The energy-scaled two-photon absorption spectrum (red dashed line
and red points) nicely coincides with the one under single-photon conditions. The two-photon-
excited fluorescence spectrum (black dashed line and black points) coincides with the
conventional fluorescence spectrum (black solid line).
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Figure S27. Double-logarithmic plot of the emission maximum intensity versus laser power for
FL-m (orange points) and FL-DTEo (black points). The dashed lines represent the linear
regression fittings. In both cases the slopes are close to 2, which indicate the two-photon

absorption regime.
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Two-Photon-Mediated Isomerization Studies

A FL-DTEo solution (10 uM in methanol) was irradiated with 302 nm light until the
photostationary state was reached, being this process followed by UV/vis absorption.
Approximately less than 1 uL of this solution was introduced inside 5 uL. microcapillary tubes
(Hirschmann). Theses tubes were employed in order to avoid as much as possible any diffusion
phenomena. The capillaries were then sealed to avoid evaporation of the solvent. The
isomerization process was followed by recording 500 images during 120 seconds, i.e., 1 image
each 240 msec. Excitation at 820 nm was carried out at half intensity and full intensity of the
laser power at this wavelength. The images were processed as described above for the emission

spectra, resulting in the curves displayed in the main text.

Modeling of the FI/HI Quotient

The generic expressions for the fluorescence intensity kinetics expected for HI (half laser
intensity) and FI (full laser intensity; see Figure 3 in main text), assuming a quartic dependence

are:
Hi:y=1-e™®
Fl:y = 4x(1-e)

The quotient FI/HI was plotted (with k arbitrarily set to 1) under the assumption that X % of
the open fluorescent isomer was present already at time = 0 (at the PSD after 302 nm exposure).
With X = 6 %, the curve in Figure S28 resulted, with a maximum quotient of 10.1, being in

coincidence with the experimental observations (see main text).
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Figure S28. Modeling of the FI/HI quotient, assuming a presence of 6% open isomer in the

initial state (time = 0).

The ratio of the fast kinetic components, ascribed to FRET-induced isomerization, is 4.2 (Figure

S29). For a quartic dependence the ratio is expected to be 4.
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Figure S29. Biexponential fitting of the FI (blue) and HI (red) kinetic traces of fluorescence

build-up on ring-opening isomerization of FL-DTEc under two-photon excitation.
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Evaluation of the Possibility of Photoinduced Electron Transfer in the FL-DTE Dyad

In order to evaluate the possibility of the occurrence of photoinduced electron transfer (PET)
from excited singlet state fluorene to the isomeric forms of the DTE moiety in the dyad we
employed the Rehm-Weller equation (AG = Eox — Ered — E* + C). Redox potentials are
commonly available for acetonitrile or DMF, which are comparable in their polarity with
methanol, being the solvent of our study. The reduction potentials (vs. SCE reference) for a
DTE model are available from the literature; Ered (DTEO) ~ —2.3 V and Ereq (DTEC) ~ -1.8 .Y/
The excitation energy of the fluorene moiety was estimated as E* ~ 2.8 eV, according to a
published approach for ICT fluorophores.*® The oxidation potential of the push-pull fluorene
moiety is unfortunately not available. However, using the redox potential of an electronically
related push-pull aromatic system (such as 4-methylcarboxy-N,N-dimethylaniline or 4-
trifluoromethyl-N,N-dimethylaniline, Eox ~ 1.1 V vs. SCE in acetonitrile)® should provide an
approximate value. The Coulomb term C was taken as —0.06 eV. With these data the driving
force for PET was estimated as AG ~ +0.55 eV for FL-DTEo and AG = +0.05 eV for FL-DTEc.
Hence, PET seems unlikely to play a role. Noteworthy, the FL-DTEo dyad shows no
diminishing of the fluorescence quantum yield as compared to FLm, corroborating the absence
of quenching (i.e., PET).
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