Asymmetric Dearomative Cascade Multiple Functionalizations of Activated N-Alkyl Pyridinium and Quinolinium Salts

Xue Song,† Ru-Jie Yan,† Wei Du,*† and Ying-Chun Chen*†,‡

E-mail: duweiyb@scu.edu.cn; ycchen@scu.edu.cn

Supporting Information

Table of contents

1. General methods	S2
2. Preparation of substrates and catalysts	S3
3. Detailed screening conditions for dearomative cascade reac	ctionsS8
4. General procedure for dearomative cascade reaction with e	enones 2 and activated
azaarene salts	S11
4.1 General procedure for dearomative cascade reaction with	enones 2 and activated N-
alkyl pyridinium salts 1	S11
4.2 General procedure for dearomative cascade reaction with	enones 2 and activated N-
alkyl quinolinium salts 4	S28
4.3 General procedure for dearomative cascade reaction with	cyclic dienones 7 and
activated N,4-dialkyl pyridinium salt 6	S40
5. Transformations of products	S44
6. More substrate exploration	S46
7. Proposed catalytic mechanism	S48
8. Crystal data and structural refinement	S50
9 NMR HRMS spectra and HPLC chromatograms	\$57

[†]Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

[‡]College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.

1. General methods

Unless otherwise noted, all reactions were carried out under ambient atmosphere; when the reactions required heating, the heat source was oil bath. ¹H NMR (400 or 600 MHz), ¹³C NMR (100 or 150 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded on Varian INOVA-400/54, Agilent DD2-600/54, Bruker AVANCE NEO 400 or Bruker AscendTM 400 instruments (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, dd = double doublet, ddd = double doublet doublet, dt = double triplet; td = triple doublet; tt = triple triplet, m = multiplet, br = broad, and coupling constants J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2, Agilent G1969-85000 or Shimadzu LCMS-IT-TOF using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. X-ray diffraction experiments were carried out on an Agilent Gemini or Xcalibur E and the data obtained were deposited at the Cambridge Crystallographic Data Centre. In each case, diastereomeric ratio was determined by ¹H NMR analysis and enantiomeric excess was determined by HPLC (Agilent Technologies: 1220 Infinity II, 1200 Series, 1260 Infinity) analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak AD-H Column (250 × 4.6 mm), Chiralpak IG Column (250 × 4.6 mm), Chiralpak ID Column (250 × 4.6 mm), Chiralpak IB Column (250 × 4.6 mm), Chiralpak IF Column (250 × 4.6 mm) or Chiralpak IE Column (250 × 4.6 mm). UV detection was monitored at 254 nm. The specific optical rotation was obtained from Rudolph Research Analytical Autopol I automatic polarimeter in CHCl₃ solution at 25 °C. The melting point was obtained from WRX-4 Mel-Temp apparatus. Column chromatography was performed on silica gel (200–300 mesh) eluting with ethyl acetate (EtOAc) and petroleum ether or dichloromethane (DCM)/methanol (MeOH). TLC was performed on glass-backed silica plates. UV light, I2, and solution of potassium permanganate were used to visualize products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether (60–90 °C), dichloromethane (DCM) and 1,2-dichloroethane (DCE) was redistilled. The enones 2,1 cyclic 2,4-dienones 7a-7f,2,3 primary amine catalysts C1, C2, C5, C6,⁴ and C12,⁵ were synthesized according to the literature procedures.

2. Preparation of substrates and catalysts

2.1 General procedure for the preparation of activated N-alkyl pyridinium salts^{6,7}

In a flask equipped with a magnetic stirring bar and a reflux condenser, pyridine derivative (2.0 mmol, 1.0 equiv) and alkyl bromide (3.0 mmol, 1.2 equiv) were dissolved in acetonitrile (5.0 mL) and the resulting mixture was heated at 80 °C. After completion (monitored by TLC, EtOAc/petroleum ether = 1:5), the mixture was cooled to 0 °C and EtOAc (4.0 mL) was added dropwise until a white precipitate was formed. The solid was then filtered and washed with cold Et₂O to afford the desired N-alkyl pyridinium salt 1.

2.2 General procedure for the preparation of N-benzyl 4-methyl-3-nitropyridinium salt⁸

In a flask equipped with a magnetic stirring bar and a reflux condenser, 4-methyl-3- substituted (2.0 mmol, 1.0 equiv) and alkyl bromide (0.36 mL, 3.0 mmol, 1.5 equiv) were dissolved in acetonitrile (2.0 mL) and the resulting mixture was heated at 80 $^{\circ}$ C for 18 h. After completion (monitored by TLC, EtOAc/petroleum ether = 1:5), the mixture was cooled to 0 $^{\circ}$ C and EtOAc (4.0 mL) was added dropwise until a precipitate was formed. The solid was then filtered and washed repeatedly with cold Et₂O to afford the desired pyridinium salt **6**.

- (1) Barrios Antúnez, D.-J.; Greenhalgh, M. D.; Fallan, C.; Slawin, A. M. Z.; Smith, A. D. *Org. Biomol. Chem.* **2016**, *14*, 7268.
- (2) Kowalczyk, R.; Boratyński, P. J.; Wierzba, A. J.; Bąkowicz, J. RSC Adv. 2015, 5, 66681.
- (3) Hénon, H.; Mauduit, M.; Alexakis, A. Angew. Chem., Int. Ed. 2008, 47, 9122.
- (4) Lee, A.; Michrowska, A.; Sulzer-Mosse, S.; List, B. Angew. Chem., Int. Ed. 2011, 50, 1707.
- (5) Kucherenko, A. S.; Kostenko, A. A.; Zhdankina, G. M.; Kuznetsova, O. Y.; Zlotin, S. G. *Green Chem.* **2018**, 20, 754.
- (6) Zhang, M.; Lan, H.; Li, N.; Zhong, Q.; Zhu, H.; Liu, C.; Zhao, H. J. Org. Chem. 2020, 85, 8279.
- (7) Di Carmine, G.; Ragno, D.; Bortolini, O.; Giovannini, P. P.; Mazzanti, A.; Massi, A.; Fogagnolo, M. J. Org. Chem. **2018**, 83, 2050.
- (8) Yan, R.-J.; Xiao, B.-X.; Ouyang, Q.; Liang, H.-P.; Du, W.; Chen, Y.-C. Org. Lett. 2018, 20, 8000.

2.3 Procedure for the preparation of N-benzyl quinolinium salts

General procedure for the preparation of N-benzyl quinolinium salts 4

$$R = \frac{\text{BnBr (1.2 equiv)}}{\text{CH}_3\text{CN, reflux}} \qquad \qquad R = \frac{\text{Br}}{\text{N}} \qquad \text{Br}$$

In a flask equipped with a magnetic stirring bar and a reflux condenser, quinoline derivative (2.0 mmol, 1.0 equiv) and alkyl bromide (3.0 mmol, 1.2 equiv) were dissolved in acetonitrile (5.0 mL) and the resulting mixture was heated at 80 $^{\circ}$ C for 48 h. After completion (monitored by TLC, EtOAc/petroleum ether = 1:5), the mixture was cooled to 0 $^{\circ}$ C and EtOAc (4.0 mL) was added dropwise until a precipitate was formed. The solid was then filtered and washed with EtOAc to afford the desired N-benzyl quinolinium salt 4 (except for 4a).

Typical procedure for the preparation of N-benzyl quinolinium salts 4a

In a sealed tube equipped with a magnetic stirring bar, 6-nitroquinoline (0.87 g, 5.0 mmol, 1.0

equiv) and benzyl bromide (0.61 ml, 5.0 mmol, 1.0 equiv) were dissolved in EtOAc (10.0 mL) and the resulting mixture was heated at 105 °C for 3 days. A yellow precipitate was formed, which was cooled to rt, filtered and washed repeatedly with EtOAc to afford the 1-benzyl-6-nitroquinolin-1-ium bromide 4a.

3-Cyano-1-(2-methylbenzyl)pyridin-1-ium bromide 1d: white solid, 99% yield, mp = 199–200 °C; ¹H NMR (400 MHz, D₂O) : δ (ppm) 1H NMR (400 MHz, D₂O) δ 9.32 (d, J = 1.6 Hz, 1H), 9.13 (d, J = 6.3 Hz, 1H), 8.97 (dt, J = 8.2, 1.4 Hz, 1H), 8.28 (dd, J = 8.1, 6.4 Hz, 1H), 7.56 – 7.44 (m, 1H), 7.45 – 7.33 (m, 3H), 5.97 (s, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, D₂O): δ (ppm) 149.2, 147.8, 147.7, 138.6, 131.5, 131.4, 131.0, 129.0, 128.9, 127.1, 114.2, 113.2, 63.7, 18.1.

3-Cyano-1-(2-hydroxyethyl)pyridin-1-ium bromide 1f: white solid, 84% yield, mp = 126-127 °C; 1 H NMR (400 MHz, D₂O) : δ (ppm) 9.61 – 9.48 (m, 1H), 9.29 – 9.19 (m, 1H), 9.04 (dt, J = 8.1, 1.5 Hz, 1H), 8.37 (ddd, J = 9.3, 6.3, 2.6 Hz, 1H), 4.95 – 4.84 (m, 2H), 4.21 – 4.06 (m, 2H); 13 C NMR (100 MHz, D₂O): δ (ppm) 149.2, 148.6, 148.5, 128.9, 113.9, 113.3, 64.6, 59.9.

1-Benzyl-6-nitroquinolin-1-ium bromide 4a: yellow solid, 20% yield, mp = 1 112–113 °C; 1 H NMR (400 MHz, DMSO- 2 d₆): δ (ppm) 10.02 (dd, 2 J = 5.9, 1.5 Hz, 1H), 9.68 (d, 2 J = 8.4 Hz, 1H), 9.55 (d, 2 J = 2.6 Hz, 1H), 8.84 (dd, 2 J = 9.7, 2.6 Hz, 1H), 8.76 (d, 2 J = 9.7 Hz, 1H), 8.51 (dd, 2 J = 8.4, 5.8 Hz, 1H), 7.53–7.32 (m, 5H), 6.50 (s, 2H); 13 C NMR (100 MHz, DMSO- 2 d₆): δ (ppm) 154.1, 150.5, 147.1, 140.1, 133.9, 130.2, 129.6, 129.4, 128.9, 128.0, 127.4, 125.0, 122.3, 61.0.

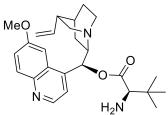
1-Benzyl-6-cyanoquinolin-1-ium bromide 4b: white solid, 49% yield, mp = 191-192 °C; 1 H NMR (400 MHz, DMSO- d_{6}) : δ (ppm) 9.92 (dd, J = 5.9, 1.5 Hz, 1H), 9.44 (dt, J = 8.5, 1.2 Hz, 1H), 9.20 (d, J = 1.9 Hz, 1H), 8.70 (d, J = 9.3 Hz, 1H), 8.54 (dd, J = 9.3, 1.9 Hz, 1H), 8.45 (dd, J = 8.4, 5.8 Hz, 1H), 7.54–7.20 (m, 5H), 6.44 (s, 2H); 13 C NMR (100 MHz, DMSO- d_{6}): δ (ppm) 153.6, 149.1, 139.4, 137.6, 136.4, 134.0, 129.9, 129.6, 129.4, 128.0, 124.8, 121.5, 117.5, 113.0, 60.7.

1-Benzyl-7-nitroquinolin-1-ium bromide 4c: yellow solid, 79% yield, mp = 235–236 °C; ¹H NMR (400 MHz, D₂O): δ (ppm) 9.58 (dd, J = 5.8, 1.5 Hz, Br 1H), 9.37–9.30 (m, 2H), 8.69 (dd, J = 9.1, 1.9 Hz, 1H), 8.63 (d, J = 9.0 Hz, 1H), 8.31 (dd, J = 8.6, 5.8 Hz, 1H), 7.62–7.31 (m, 5H), 6.43 (s, 2H); ¹³C NMR (100 MHz, D₂O): δ (ppm) 154.5, 153.1, 151.1, 140.2, 135.8, 135.4, 134.5, 132.2, 132.1, 130.5, 127.4, 126.1, 118.0, 64.1.

2.4 General procedure for the preparation of primary amine catalysts C3, C4, C7-C10

COOH
$$R^2$$
 NH₂ R^1 = H R^1 = OMe R^2 NHBoc R^2 NHBoc R^2 NHBoc R^1 = H R^1 = OMe R^1 = H R^1 = OMe R^2 NHBoc R^2 NHBoc R^2 NHBoc R^2 NHBoc R^2 NHBoc R^3 R R^4 = H R^4 = OMe

Preparation of S2: Amino acid **S1** (10 mmol) was dissolved in dioxane/water (2:1, 30 mL), and NaOH (1 M, 10 mL) was added. The mixture was cooled in an ice-bath, and $(Boc)_2O$ (3.27 g, 15.0 mmol) and NaHCO₃ (840 mg, 10.0 mmol) were added. The reaction mixture was stirred at room temperature overnight, and then it was evaporated in vacuo. The residue was diluted with EtOAc (40 mL), and cooled in an ice-bath and acidified to pH = 2.5–3 with 1 M KHSO₄ aqueous solution. The organic layer was separated, and the aqueous fraction was extracted with EtOAc (20 mL \times 2). The combined organic layers were washed with water, dried and evaporated, leaving products as a colorless oil in a quantitative yield. The crude product was used for the condensation step without further purification.

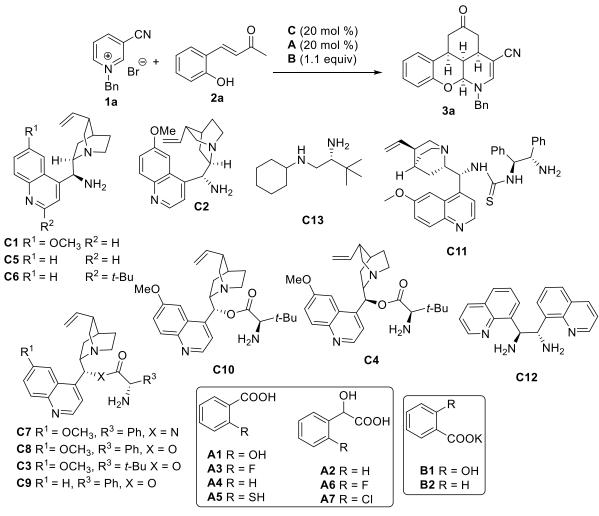

Preparation of S3: cinchona alkaloid was added to a solution of crude residue **S2** in dry DCM (50 mL). The mixture was cooled in an ice-bath, and DCC (2.06 g, 10.0 mmol), Et₃N (1.40 mL, 10.0 mmol) and DMAP (122 mg, 1.00 mmol) were added. After stirring at room temperature overnight, the precipitates were filtered and the cake was washed with DCM. The filtrate was dried and evaporated, and the residue was purified by chromatography on silica (DCM/MeOH = 50:1 to 25:1). **Preparation of C3, C4 and C7–C10:** TFA (3 mL) was added to a solution of **S3** (3.0 mmol) in DCM (15 mL) in an ice-bath, and the mixture was stirred at room temperature for 5 h. The solution was

evaporated, and a solution of NaOH (1M) was added slowly at 0 °C until pH was adjusted to 9. The organic layer was separated, and the aqueous layer was extracted with DCM (25 mL × 2). The combined organic layers were dried and evaporated, and the residue was purified chromatographically on silica gel (DCM/MeOH = 50:1).

$$H_2\tilde{N}$$

Quinyl (S)-2-amino-3,3-dimethylbutanoate C3: white solid, 13% yield for 3 steps, mp = 101-102 °C; $[\alpha]_D^{25} = 8.6$ (c = 1.0 in CHCl₃); ¹H NMR $(400 \text{ MHz}, \text{CHCl}_3)$: $\delta \text{ (ppm) } 8.75 \text{ (d, } J = 4.6 \text{ Hz, } 1\text{H), } 8.01 \text{ (d, } J = 9.2 \text{ Hz, } 1\text{H)}$ 1H), 7.52 (d, J = 2.7 Hz, 1H), 7.40 (d, J = 4.6 Hz, 1H), 7.37 (dd, J = 9.2, 2.7 Hz, 1H), 6.57 (s, 1H), 5.99–5.70 (m, 1H), 5.05 (dt, J = 5.4, 1.6 Hz,

1H), 5.02 (d, J = 1.5 Hz, 1H), 3.97 (s, 3H), 3.44 (t, J = 13.2 Hz, 1H), 3.20 (s, 1H), 3.13-2.89 (m, 2H), 2.78–2.49 (m, 2H), 2.37–2.21 (m, 1H), 2.08–1.95 (m, 1H), 1.94–1.83 (m, 1H), 1.73 (m, 2H), 1.61– 1.53 (m, 2H), 1.51–1.42 (m, 1H), 0.82 (s, 9H); 13 C NMR (100 MHz, CHCl₃): δ (ppm) 174.6, 157.9, 147.4, 144.9, 143.2, 141.7, 131.8, 127.3, 121.9, 119.6, 114.6, 101.6, 63.7, 59.2, 56.4, 55.6, 42.3, 42.3, 39.6, 34.7, 27.7, 27.4, 26.2, 25.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₃₆N₃O₃ 438.2751; Found 438.2751.



438.2747.

Quinidinyl (R)-2-amino-3,3-dimethylbutanoate C4: white solid, 15% yield for 3 steps, mp = 115–116 °C; $[\alpha]_D^{25} = +46.8$ (c = 0.75 in CHCl₃); ¹H NMR (400 MHz, CHCl₃): δ (ppm) 8.74 (d, J = 4.4 Hz, 1H), 8.01 (d, J = 9.2 Hz, 1H), 7.48 (d, J = 2.7 Hz, 1H), 7.42–7.21 (m, 2H), 6.69–6.51 (m, 1H), 6.10-5.89 (m, 1H), 5.22-4.95 (m, 2H), 3.97 (s, 3H), 3.37 (q, J = 8.7 Hz, 1H), 3.21 (s, 1H),2.94–2.82 (m, 2H), 2.81–2.59 (m, 2H), 2.42–2.16 (m, 1H), 1.88–1.82 (m, 1H), 1.82–1.75 (m, 1H), 1.71–1.50 (m, 5H), 0.84 (s, 9H); ¹³C NMR (100 MHz, CHCl₃): δ (ppm) 174.6, 157.9, 147.4, 144.8, 143.5, 140.3, 131.8, 127.3, 121.9, 119.3, 115.0, 101.5, 63.7, 59.3, 55.6, 49.7, 49.1, 39.7, 34.7, 29.7, 27.7, 26.4, 26.3, 24.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₃₆N₃O₃ 438.2751; Found

3. Detailed screening conditions for dearomative cascade reactions

3.1 Complete screening conditions for dearomative cascade reaction of enone 2a and activated N-alkyl pyridinium salt 1a

entry ^a	cat	В	Α	solvent	T (°C)	<i>t</i> (h)	yield (%) ^b	ee (%)°
1	C1	B2	A 1	CHCI ₃	rt	36	45	94
2	C5	B2	A 1	CHCI ₃	rt	36	58	89
3	C6	B2	A 1	CHCI ₃	rt	36	51	90
4	C13	B2	A 1	CHCI ₃	rt	36	35	74
5	C11	B2	A 1	CHCI ₃	rt	36	30	23
6	C1	B2	А3	CHCI ₃	rt	48	56	81
7	C1	B2	A4	CHCI ₃	rt	48	29	82
8	C1	B2	A5	CHCI ₃	rt	48	15	86
9	C1	B2	A2	CHCI ₃	rt	48	45	85
10	C1	B2	A6	CHCI ₃	rt	48	30	84
11	C1	B1	A 1	CHCI ₃	rt	36	56	96
12	C1	AcONa	A 1	CHCI ₃	rt	48	44	71

13	C1	B1	A 1	CHCl ₃	40	36	63	94
14	C1	B1	A 1	THF	40	36	37	87
15	C1	B1	A 1	DCE	40	60	65	97
16	C1	B1	A1	CH₃CN	40	40	56	91
17	C1	B1	A1	DCM	40	18	62	95
18	C1	B1	A 1	DCM	25	48	78	98

^aUnless noted otherwise, reactions were performed with pyridinium salt **1a** (0.11 mmol, 1.1 equiv), enone **2** (0.1 mmol, 1.0 equiv), **C** (20 mol %), **A** (20 mol %), **B** (1.1 equiv) in sovent (1.0 mL) at rt . ^bYield of the isolated product. ^cDetermined by HPLC analysis on a chiral stationary phase.

3.2 Complete screening conditions for dearomative cascade reaction with enone 2a and N-alkyl quinolinium salt 4a

entry ^a	cat	Α	В	solvent	yield (%) ^b	ee (%) ^c
1	C1	A1	Na ₂ HPO ₄	DCM	71	3
2	C7	A 1	Na ₂ HPO ₄	DCM	18	17
3	C8	A1	Na ₂ HPO ₄	DCM	48	37
4	С3	A1	Na ₂ HPO ₄	DCM	27	66
5	С9	A1	Na ₂ HPO ₄	DCM	31	37
6	C10	A1	Na ₂ HPO ₄	DCM	31	-40
7	C11	A1	Na ₂ HPO ₄	DCM	0	/
8	C12	A1	Na ₂ HPO ₄	DCM	33	-62
9	С3	А3	Na ₂ HPO ₄	DCM	37	70
10	СЗ	A5	Na ₂ HPO ₄	DCM	40	67
11	СЗ	A4	Na ₂ HPO ₄	DCM	23	70
12	СЗ	(<i>R</i>)-A2	Na ₂ HPO ₄	DCM	54	75
13	С3	(<i>R</i>)-A2	B1	DCM	52	48
14	СЗ	(<i>R</i>)-A2	B2	DCM	48	45
15	СЗ	(<i>R</i>)-A2	K₂CO₃	DCM	0	/
16	С3	(<i>R</i>)-A2	Na ₂ HPO ₄	DCE	54	83
17	С3	(<i>R</i>)-A2	Na ₂ HPO ₄	CHCI ₃	43	71
18	С3	(<i>R</i>)-A2	Na ₂ HPO ₄	Tol	14	66
19 ^d	C3	(<i>R</i>)-A2	Na ₂ HPO ₄	DCE	70	87
20 ^d	СЗ	A2	Na ₂ HPO ₄	DCE	70	89

3.3 Complete screening conditions for dearomative cascade reaction with cyclic dienone 7a and N,4-dialkyl pyridinium salt 6

entry ^a	cat	Α	В	solvent	yield (%) ^b	ee (%) ^c
1	C1	(<i>R</i>)-A2	Na₂HPO₄	CHCl₃	38	75
2	C6	(<i>R</i>)-A2	Na₂HPO₄	CHCl ₃	19	66
3	C8	(<i>R</i>)-A2	Na₂HPO₄	CHCl ₃	16	-17
4	C10	(<i>R</i>)-A2	Na₂HPO₄	CHCl ₃	14	-48
5	C12	(<i>R</i>)-A2	Na₂HPO₄	CHCl ₃	0	-
6	C1	A 1	B2	CHCl ₃	57	53
7	C1	A4	B2	CHCl ₃	30	52
8	C1	(<i>R</i>)-A2	B2	CHCl₃	45	70
10	C1	(<i>R</i>)-A7	B2	CHCI ₃	60	63
11	C1	A7	B2	CHCI ₃	38	60
12	C1	AcOH	B2	CHCI ₃	27	67
13	C1	(<i>R</i>)-A2	B1	CHCI ₃	63	15
14	C1	(<i>R</i>)-A2	TEA	CHCI ₃	0	-
15	C1	(<i>R</i>)-A2	DBU	CHCI ₃	0	-
16	C1	(<i>R</i>)-A2	NaHCO₃	CHCI ₃	33	45
17	C1	(<i>R</i>)-A2	KOAc	CHCI ₃	24	60
18 ^d	C1	(<i>R</i>)-A2	Na₂HPO₄	CHCI ₃	43	70
19 ^d	C1	(<i>R</i>)-A2	Na₂HPO₄	DCM	64	78
20 ^d	C1	(<i>R</i>)-A2	Na₂HPO₄	DCE	58	75
21 ^d	C1	(<i>R</i>)-A2	Na ₂ HPO ₄	THF	60	70
23 ^d	C1	(<i>R</i>)-A2	Na ₂ HPO ₄	Tol	20	76
23 ^d	C1	(<i>R</i>)-A2	Na ₂ HPO ₄	CH₃CN	57	71
24 ^{d, e}	C1	(<i>R</i>)-A2	Na₂HPO₄	DCM	75	81

^eUnless noted otherwise, reactions were performed using **7a** (0.05 mmol,1.0 equiv), **6** (0.06 mmol,1.2 equiv), **C** (20 mol %), **A** (40 mol %), **B** (2.2 equiv) in solution (0.5mL) at 25 °C for 48 h. ^bYield of the isolated product; °Determined by HPLC analysis on a chiral stationary phase. ^e**B** (1.2 equiv). ^e**7a** (0.1 mmol, 1.0 equiv), amine **C1** (20 mol %), and **A** (40 mol %) were stirred in solution (1.0 mL) at 25 °C. Followed by **B** (0.12 mmol, 1.2 equiv) and **6** (0.12 mmol, 1.2 equiv) were added uniformly in four portions in the period of 12 hours.

4. General procedure for dearomative cascade reaction with enones 2 and activated azaarene salts

4.1 General procedure for dearomative cascade reaction with enones 2 and activated N-alkyl pyridinium salts 1

General procedure A: A mixture of activated N-alkyl pyridinium salt 1 (0.11 mmol, 1.1 equiv), enone 2 (0.1 mmol, 1.0 equiv), amine C1 (20 mol %), acid A1 (20 mol %) and B1 (0.11 mmol, 1.1 equiv) was stirred in DCM (1.0 mL) at rt, and the reaction was monitored by TLC. After completion, the product 3 was obtained by flash chromatography on silica gel. The racemic 3 was generally obtained under the catalysis of benzylamine. The enantiomers were obtained with amine C2.

Synthesis of 3a: A mixture of (*E*)-4-(2-hydroxyphenyl)but-3-en-2-one **2a** (16.2 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for 48 h. After

completion, it was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) to give product **3a**: 27.8 mg (0.0781 mmol), as a white solid, 78% yield; mp = 96–97 °C; $[\alpha]_D^{25}$ = +73.6 (c = 0.60 in CHCl₃); 98% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 13.45 min, t (major) = 16.70 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.42–7.32 (m, 3H), 7.28–7.25 (m, 2H), 7.12 (m, 2H), 7.98–6.94 (m, 1H), 6.92 (s, 1H), 6.85 (d, J = 8.2 Hz, 1H), 4.87 (d, J = 2.5 Hz, 1H), δ 4.57 (d, J = 14.8 Hz, 1H), 4.43 (d, J = 14.8 Hz, 1H), 3.85–3.76 (m, 1H), 2.98 (ddd, J = 13.7, 8.7, 3.7 Hz, 1H), 2.93–2.78 (m, 3H), 2.53 (dd, J = 18.4, 3.7 Hz, 1H), 2.29 (dd, J = 18.4, 13.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.3, 149.8, 141.3, 131.6, 125.0, 124.43, 124.37, 124.3, 124.2, 120.1, 119.0, 116.3, 113.9, 78.2, 77.2, 53.0,

40.9, 37.3, 29.2, 27.7, 24.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₀N₂O₂Na 379.1417; Found 379.1422.

Synthesis of ent-3a: A mixture of (*E*)-4-(2-hydroxyphenyl)but-3-en-2-one **2a** (16.2 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), and amine **C2** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for 48

h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **ent-3a**: 16.2 mg (0.0455 mmol), as a white solid, 46% yield; $[\alpha]_D^{25} = -70.3$ (c = 0.60 in CHCl₃); 95% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 17.08min, t (major) = 13.61 min.

Synthesis of 3b: A mixture of (*E*)-4-(2-hydroxy-3-methylphenyl)but-3-en-2-one **2b** (17.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for 48 h. After

completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **3b**: 10.0 mg (0.0270 mmol), as a white semi solid, 27% yield; $[\alpha]_D^{25} = +61.8$ (c = 0.22 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 12.48 min, t (major) = 14.14 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.42–7.31 (m, 3H), 7.30–7.26 (m, 2H), 7.02–6.91 (m, 3H), 6.90–6.80 (m, 1H), 4.85 (d, J = 2.4 Hz, 1H), 4.59 (d, J = 14.8 Hz, 1H), 4.44 (d, J = 14.8 Hz, 1H), 3.82 (dt, J = 9.0, 4.1 Hz, 1H), 3.04–2.94 (m, 1H), 2.90 (dd, J = 16.3, 4.7 Hz, 1H), 2.87–2.83 (m, 1H), 2.79 (dd, J = 16.3, 3.5 Hz, 1H), 2.54 (dd, J = 18.4, 3.8 Hz, 1H), 2.31 (dd, J = 18.4, 13.9 Hz, 1H), 2.16 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 208.4, 151.9, 145.4, 135.6, 129.4, 129.1, 128.4, 128.1, 127.3, 125.9, 123.8, 122.4, 120.4, 82.5, 81.2, 57.2, 45.1, 41.4, 33.2, 32.0, 28.7, 15.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₂N₂O₂Na 393.1573; Found 393.1574.

Synthesis of 3c: A mixture of (*E*)-4-(3-chloro-2-hydroxyphenyl)but-3-en-2-one **2c** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for 60

h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product 3c: 10.5 mg (0.0228 mmol), as a white solid, 23% yield; mp = 78–80 °C; [α]_D²⁵ = +29.1 (c = 0.36 in CHCl₃); 95% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane: i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 12.97 min, t (major) = 15.56 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.42–7.28 (m, 5H), 7.22 (dd, J = 8.0, 1.5 Hz, 1H), 7.02 (dt, J = 7.9, 1.3 Hz, 1H), 6.94 (d, 1H), 6.90 (d, J = 7.9 Hz, 1H), 4.85 (d, J = 2.6 Hz, 1H), 4.64 (d, J = 14.6 Hz, 1H), 4.46 (d, J = 14.6 Hz, 1H), 3.88–3.77 (m, 1H), 3.01 (ddd, J = 13.8, 8.7, 3.8 Hz, 1H), 2.97–2.83 (m, 2H), 2.79 (dd, J = 16.2, 3.6 Hz, 1H), 2.57 (dd, J = 18.6, 3.7 Hz, 1H), 2.31 (dd, J = 18.6, 13.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 207.7, 149.6, 145.4, 135.2, 129.1, 128.9, 128.5, 128.4, 126.8, 126.2, 123.3, 123.2, 120.0, 82.8, 81.7, 57.0, 45.0, 41.3, 33.0, 32.2, 28.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₉N₂O₂³⁷ClNa 415.0998; Found 415.1038; Calcd for C₂₃H₁₉N₂O₂³⁵ClNa 413.1027; Found 413.1024.

Synthesis of 3d: A mixture of (*E*)-4-(2-hydroxy-4-methylphenyl)but-3-en-2-one **2d** (17.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL)

was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product 3d: 20.0 mg (0.0541 mmol), as a white solid, yield 54%; mp = 129–130 °C; [α]_D²⁵ = +57.7 (c = 0.60 in CHCl₃); 94% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 13.67 min, t (major) = 15.23 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.41–7.31 (m, 3H), 7.29–7.26 (m, 2H), 6.98 (d, J = 8.0 Hz, 1H), 6.91 (s, 1H), 6.78 (dd, J = 8.0, 1.8 Hz, 1H), 6.67 (s, 1H), 4.85 (d, J = 2.8 Hz, 1H), 4.57

(d, J = 14.8 Hz, 1H), 4.43 (d, J = 14.8 Hz, 1H), 3.82–3.72 (m, 1H), 3.02–2.93 (m, 1H), 2.91–2.75 (m, 3H), 2.53 (dd, J = 18.4, 3.7 Hz, 1H), 2.28 (dd, J = 18.4, 14.0 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.5, 153.6, 145.4, 138.6, 135.6, 129.1, 128.4, 128.20, 128.16, 124.1, 120.9, 120.3, 118.2, 82.2, 81.3, 57.1, 44.9, 41.3, 33.2, 31.5, 28.6, 21.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₂N₂O₂Na 393.1573; Found 393.1573.

Synthesis of 3e: A mixture of (*E*)-4-(2-hydroxy-4-methoxyphenyl) but-3-en-2-one **2e** (19.2 mg, 0.1 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol, 20 mol, 0.112 mmol, 1.1 equiv) in

DCM (2.0 mL) was stirred at 4 $^{\circ}$ C for 8 days. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **3e**: 16.6 mg (0.0430 mmol), as a white solid, 43% yield; mp = 133–135 $^{\circ}$ C; [α]_D²⁵ = +31.1 (c = 1.1 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 19.69 min, t (major) = 22.43 min; 1 H NMR (400 MHz, CDCl₃): (ppm) δ 7.43–7.30 (m, 3H), 7.28–7.25 (m, 2H), 6.99 (d, J = 8.6 Hz, 1H), 6.91 (s, 1H), 6.55 (dd, J = 8.6, 2.6 Hz, 1H), 6.37 (d, J = 2.6 Hz, 1H), 4.87 (d, J = 2.6 Hz, 1H), 4.57 (d, J = 14.8 Hz, 1H), 4.43 (d, J = 14.8 Hz, 1H), 3.71–3.80 (m, 1H), 3.75 (s, 3H), 2.97 (ddd, J = 13.4, 8.8, 3.8 Hz, 1H), 2.82 (m, 2.71–2.92, 3H), 2.53 (dd, J = 18.4, 3.8 Hz, 1H), 2.26 (dd, J = 18.4, 14.0 Hz, 1H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 208.5, 159.5, 154.6, 145.3, 135.6, 129.1, 128.4, 128.2, 120.3, 115.9, 110.2, 102.4, 82.3, 81.4, 57.1, 55.4, 44.9, 41.3, 33.1, 31.3, 28.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₂N₂O₃Na 409.1523; Found 409.1526.

Synthesis of 3f: A mixture of (*E*)-4-(4-chloro-2-hydroxyphenyl)but-3-en-2-one **2f** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol, 20 mol, 1.1 equiv) in DCM

(1.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:5) gave product **3f**: 27.0 mg (0.0692 mmol), as a white solid, yield 69%; mp = 156–157 °C; $[\alpha]_D^{25}$ = +49.5 (c = 1.60 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 6.50 min, t (major) = 7.71 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.49–7.32 (m, 3H), 7.32–7.21 (m, 2H), 7.07–6.98 (m, 1H), 6.94 (dd, J = 8.3, 2.2 Hz, 1H), 6.91 (d, J = 1.1 Hz, 1H), 6.87 (d, J = 2.2 Hz, 1H), 4.86 (d, J = 2.6 Hz, 1H), 4.56 (d, J = 14.8 Hz, 1H), 4.43 (d, J = 14.8 Hz, 1H), 3.72–3.84 (m, 1H), 3.05–2.93 (m, 1H), 2.93–2.70 (m, 3H), 2.54 (dd, J = 18.5, 3.8 Hz, 1H), 2.22 (dd, J = 18.5, 14.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 207.7, 154.5, 145.2, 135.4, 133.5, 129.5, 129.1, 128.5, 128.2, 123.4, 122.7, 120.1, 118.2, 82.5, 81.6, 57.1, 44.8, 41.2, 33.0, 31.6, 28.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₉N₂O₂³⁷ClNa 415.0998; Found 415.1009; Calcd for C₂₃H₁₉N₂O₂³⁵ClNa 413.1027; Found 413.1027.

Synthesis of 3g: A mixture of (*E*)-4-(2-hydroxy-5-methylphenyl)but-3-en-2-one **2g** (17.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL)

was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product 3g: 31.4 mg (0.0849 mmol), as a white solid, 85% yield; mp = 155–156 °C; [α] $_D$ ²⁵ = +95.6 (c = 0.55 in CHCl $_3$); 95% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min $^{-1}$, λ = 254 nm]: t (minor) = 13.40 min, t (major) = 16.05 min; 1 H NMR (400 MHz, CDCl $_3$): δ (ppm) 7.40–7.31 (m, 3H), 7.29–7.26 (m, 2H), 6.96–6.87 (m, 3H), 6.74 (d, J = 8.2 Hz, 1H), 4.83 (d, J = 2.6 Hz, 1H), 4.56 (d, J = 14.8 Hz, 1H), 4.42 (d, J = 14.8 Hz, 1H), 3.72–3.80 (m, 1H), 2.97 (ddd, J = 13.9, 8.7, 3.7 Hz, 1H), 2.92–2.75 (m, 3H), 2.53 (dd, J = 18.4, 3.7 Hz, 1H), 2.31 (dd, J = 18.4, 13.9 Hz, 1H), 2.23 (s, 3H); 13 C NMR (100 MHz, CDCl $_3$): δ (ppm) 208.6, 151.6, 145.4, 135.6, 132.4, 129.14, 129.06, 128.6, 128.4, 128.2, 123.8, 120.4, 117.7, 82.2, 81.2, 57.1, 44.9, 41.4, 33.2, 31.8, 28.6, 20.8; HRMS (ESI-TOF) m/z: [M + Na] $^+$ Calcd for C $_{24}$ H $_{22}$ N $_{2}$ O $_{2}$ Na 393.1573; Found 393.1571.

Synthesis of 3h: A mixture of (*E*)-4-(2-hydroxy-5-methoxyphenyl) but-3-en-2-one **2h** (19.2 mg, 0.999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol, 20 mol, 20 mol, 1.1 equiv) in

DCM (2.0 mL) was stirred at 4 $^{\circ}$ C for 7 days. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **3h**: 25.0 mg (0.0648 mmol), as a white solid, 65% yield; mp = 142–143 $^{\circ}$ C; [α]p²⁵ = +71.2 (c = 1.7 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane: i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 18.76 min, t (major) = 21.40 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.32–7.41 (m, J = 3H), 7.31–7.23 (m, 2H), 6.91 (s, 1H), 6.78 (d, J = 8.9 Hz, 1H), 6.69 (dd, J = 8.9, 2.9 Hz, 1H), 6.60 (d, J = 2.9 Hz, 1H), 4.81 (d, J = 2.6 Hz, 1H), 4.56 (d, J = 14.8 Hz, 1H), 4.42 (d, J = 14.8 Hz, 1H), 3.74–3.82 (m, 1H), 3.72 (s, 3H), 2.97 (ddd, J = 12.5, 8.7, 3.8 Hz, 1H), 2.92–2.70 (m, 3H), 2.55 (dd, J = 18.4, 3.8 Hz, 1H), 2.34 (dd, J = 18.4, 13.9 Hz, 1H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 208.3, 155.2, 147.6, 145.3, 135.6, 129.1, 128.4, 128.2, 125.0, 120.3, 118.8, 114.6, 112.8, 82.4, 81.2, 57.1, 55.7, 44.9, 41.4, 33.2, 32.2, 28.7; HRMS (ESI-TOF) m/z: [M + H]^+ Calcd for C₂₄H₂₃N₂O₃ 387.1703; Found 387.1702.

Synthesis of 3i: A mixture of (*E*)-4-(5-chloro-2-hydroxyphenyl)but-3-en-2-one **1i** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **2a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM

(1.0 mL) was stirred at 4 °C for 60 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **3i**: 25.1 mg (0.0643 mmol), as a white solid, 64% yield; mp = 105-106 °C; $[\alpha]_D^{25} = +102.6$ (c = 1.20 in CHCl₃); 97% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 16.44 min, t (major) = 19.49min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.43–7.30 (m, 3H), 7.27 (d, J = 1.9 Hz, 1H), 7.25 (d, J = 1.6 Hz, 1H), 7.12–7.04 (m, 2H), 6.92 (d, J = 1.2 Hz, 1H), 6.79 (d, J = 9.4 Hz, 1H), 4.84 (d, J = 2.6 Hz, 1H), 4.56 (d, J = 14.8 Hz, 1H), 4.43 (d, J = 14.8 Hz, 1H), 3.74–3.84 (m, 1H),

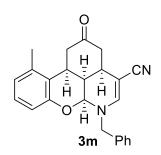
3.04-2.94 (m, 1H), 2.94-2.72 (m, 3H), 2.56 (dd, J=18.4, 3.6 Hz, 1H), 2.26 (dd, J=18.4, 14.0 Hz, 1H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 207.8, 152.5, 145.3, 135.4, 129.1, 128.6, 128.5, 128.2, 127.9, 125.9, 120.1, 119.4, 82.5, 81.4, 57.1, 44.8, 41.3, 32.9, 31.9, 28.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for $C_{23}H_{19}N_2O_2^{37}$ ClNa 415.0998; Found 415.1029; Calcd for $C_{23}H_{19}N_2O_2^{35}$ ClNa 413.1027; Found 413.1029.

Synthesis of 3j: A mixture of (*E*)-4-(5-fluoro-2-hydroxyphenyl)but-3-en-2-one **1j** (18.0 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **2a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL)

was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **3j**: 27.0 mg (0.0722 mmol), as a white solid, 72% yield; mp = 160–161 °C; $[\alpha]_D^{25}$ = +56.9 (c = 0.90 in CHCl₃); 97% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 13.12 min, t (major) = 16.05 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.30–7.43 (m, 3H), 7.31–7.22 (m, 2H), 6.92 (s, 1H), 6.86–6.73 (m, 3H), 4.84 (d, J = 2.6 Hz, 1H), 4.56 (d, J = 14.8 Hz, 1H), 4.43 (d, J = 14.8 Hz, 1H), 3.75–3.82 (m, 1H), 3.03–2.95 (m, 1H), 2.91 (dd, J = 16.3, 4.7 Hz, 1H), 2.83 (td, J = 9.1, 2.6 Hz, 1H), 2.75 (dd, J = 16.3, 3.5 Hz, 1H), 2.56 (dd, J = 18.4, 3.7 Hz, 1H), 2.29 (dd, J = 18.4, 13.9 Hz, 1H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 207.7, 158.2 (d, J = 241.9 Hz), 149.8 (d, J = 2.2 Hz), 145.2, 135.5, 129.1, 128.5, 128.2, 125.6 (d, J = 7.1 Hz), 120.1, 119.3 (d, J = 8.3 Hz), 115.6 (d, J = 23.4 Hz), 114.48 (d, J = 23.4 Hz), 82.5, 81.3, 57.1, 44.8, 41.3, 32.9, 32.2, 28.6; 19 F NMR (376 MHz, CDCl₃): δ (ppm) –119.45; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₃H₁₉N₂O₂FNa 397.1323; Found 397.1327.

Synthesis of ent-3j: A mixture of (*E*)-4-(5-fluoro-2-hydroxyphenyl)but-3-en-2-one **1j** (18.0 mg, 0.1 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C2** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for

48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **ent-3j**: 21.5 mg (0.0574 mmol), as a white solid, 57% yield; $[\alpha]_D^{25} = -53.3$ (c = 0.63 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 15.22 min, t (major) = 12.36min.


Synthesis of 3k: A mixture of (*E*)-4-(2-hydroxy-5-(trifluoromethyl) phenyl)but-3-en-2-one **2k** (23.0 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv, amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in

DCM (1.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product 3k: 34.4 mg (0.0811 mmol), as a white solid, 81% yield; mp = 220 °C; $[\alpha]_D^{25} = +96.2$ (c = 1.1 in CHCl₃); 97% ee, determined by HPLC analysis [Daicel Chiralpak IF, n-hexane/i-PrOH = 80:20, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 18.92 min, t (major) = 20.51 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.23–7.36 (m, 5H), 7.22–7.14 (m, 2H), 6.89–6.81 (m, 2H), 4.82 (d, J = 2.6 Hz, 1H), 4.49 (d, J = 14.8 Hz, 1H), 4.36 (d, J = 14.8 Hz, 1H), 3.72–3.80 (m, J = 8.8, 4.1 Hz, 1H), 3.00–2.86 (m, 1H), 2.89–2.68 (m, 3H), 2.47 (dd, J = 18.4, 3.7 Hz, 1H), 2.13 (dd, J = 18.4, 13.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 207.3, 156.6, 145.2, 135.3, 129.1, 128.6, 128.2, 125.9 (q, J = 3.8 Hz), 125.6 (q, J = 3.5 Hz), 125.3 (q, J = 32.5 Hz), 124.8, 123.8 (q, J = 270 Hz), 120.0, 118.6, 82.6, 81.6, 57.2, 44.7, 41.3, 32.9, 31.8, 28.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.76; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₀N₂O₂F₃ 447.1291; Found 447.1287.

Synthesis of 3l: A mixture of (*E*)-4-(2-hydroxy-5-nitrophenyl)but-3-en-2-one **2l** (20.7 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol, 20 mol, 0.112 mmol, 1.1 equiv) in

DCM (2.0 mL) was stirred at rt for 24 h. After completion, purification by flash chromatography on

silica gel (EtOAc/petroleum ether = 1:4) gave product **3l**: 24.3 mg (0.0606 mmol), as a white semisolid, 61% yield; $[\alpha]_D^{25} = +265.0$ (c = 0.56 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 35.32 min, t (major) = 30.06 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.99 (d, J = 2.6 Hz, 1H), 7.94 (dd, J = 9.0, 2.6 Hz, 1H), 7.36–7.25 (m, 3H), 7.24–7.17 (m, 2H), 6.90–6.85 (m, 2H), 4.88 (d, J = 2.6 Hz, 1H), 4.51 (d, J = 14.8 Hz, 1H), 4.39 (d, J = 14.8 Hz, 1H), 3.90–3.76 (m, 1H), 3.01–2.92 (m, 1H), 2.94–2.75 (m, 3H), 2.51 (dd, J = 18.6, 3.8 Hz, 1H), 2.07 (dd, J = 18.6, 13.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 206.8, 159.2, 145.0, 143.0, 135.1, 129.2, 128.7, 128.2, 125.1, 124.8, 124.3, 119.7, 118.8, 83.0, 82.0, 57.3, 44.7, 41.1, 32.6, 31.9, 28.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₀N₃O₄ 402.1448; Found 402.1448.

Synthesis of 3m: A mixture of (*E*)-4-(2-hydroxy-6-methylphenyl)but-3-en-2-one **2m** (17.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for

24 h. After completion, purification by flash chromatography on silica gel (EtOAc/ petroleum ether = 1:4) gave product **3m**: 28.9 mg (0.0781 mmol), as a white solid, 78% yield; mp = 189–190 °C; $[\alpha]_D^{25} = +101.3$ (c = 0.60 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 13.46 min, t (major) = 20.21 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.29–7.39 (m, 3H), 7.20–7.25 (m, 2H), 7.02 (t, J = 7.8 Hz, 1H), 6.93 (s, 1H), 6.81 (d, J = 7.5 Hz, 1H), 6.70 (d, J = 8.1 Hz, 1H), 4.74 (d, J = 2.9 Hz, 1H), 4.54 (d, J = 15.0 Hz, 1H), 4.42 (d, J = 15.0 Hz, 1H), 3.93 (ddd, J = 10.2, 5.7, 2.8 Hz, 1H), 3.03 (dt, J = 10.7, 7.6 Hz, 1H), 2.91 (ddd, J = 10.5, 7.8, 2.8 Hz, 1H), 2.85 (dd, J = 15.8, 5.7 Hz, 1H), 2.70 (dd, J = 15.8, 2.9 Hz, 1H), 2.66–2.54 (m, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.9, 154.9, 145.0, 137.0, 135.7, 129.1, 128.4, 128.1, 127.8, 125.6, 124.2, 120.6, 115.9, 83.7, 80.9, 57.1, 42.9, 41.4, 34.1, 31.2, 29.4, 19.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₃N₂O₂ 371.1754; Found 371.1759.

Synthesis of 3n: A mixture of (*E*)-4-(6-chloro-2-hydroxyphenyl)but-3-en-2-one **2n** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for

48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **3n**: 35.1 mg (0.090 mmol), as a white solid, 90% yield; mp = 148–149 °C; $[\alpha]_D^{25}$ = +109.9 (c = 1.7 in CHCl₃); 95% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 13.24 min, t (major) = 16.17 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.41–7.29 (m, 3H), 7.26–7.20 (m, 2H), 7.10–6.99 (m, 2H), 6.93 (s, 1H), 6.78 (dd, J = 7.9, 1.6 Hz, 1H), 4.75 (dd, J = 2.7, 1.4 Hz, 1H), 4.54 (d, J = 15.0 Hz, 1H), 4.42 (d, J = 15.0 Hz, 1H), 4.03 (ddd, J = 10.5, 5.8, 2.8 Hz, 1H), 3.12 (dd, J = 16.2, 2.8 Hz, 1H), 3.09–2.98 (m, 1H), 2.92 (ddd, J = 10.5, 7.8, 2.8 Hz, 1H), 2.84 (dd, J = 16.2, 5.8 Hz, 1H), 2.66–2.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.6, 155.8, 144.8, 135.4, 133.9, 129.1, 128.7, 128.5, 128.1, 124.7, 124.0, 120.3, 117.0, 84.2, 81.2, 57.2, 42.2, 41.4, 33.7, 31.8, 29.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₉N₂O₂³⁷ClNa 415.0998; Found 415.1035; Calcd for C₂₃H₁₉N₂O₂³⁵ClNa 413.1027; Found 413.1024.

Synthesis of ent-3n: A mixture of (*E*)-4-(6-chloro-2-hydroxyphenyl)but-3-en-2-one **2n** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C2** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for 48 h. After

completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **ent-3n**: 32.5 mg (0.0833 mmol), as a white solid, 83% yield; $[\alpha]_D^{25} = -137.0$ (c = 0.79 in CHCl₃); 94% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane: i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 16.43 min, t (major) = 13.25 min.

Synthesis of 3o: A mixture of (*E*)-4-(6-bromo-2-hydroxyphenyl)but-3-en-2-one **2o** (24.0 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for

36 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **30**: 35.1 mg (0.0808 mmol), as a white solid, 81% yield; mp = 126–127 °C; $[\alpha]_D^{25}$ = +142.3 (c = 1.60 in CHCl₃); 95% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 14.79 min, t (major) = 18.29 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.44–7.30 (m, 3H), 7.28–7.16 (m, 3H), 6.99 (t, J = 8.1 Hz, 1H), 6.93 (s, 1H), 6.81 (dd, J = 8.2, 1.2 Hz, 1H), 4.74 (s, 1H), 4.54 (d, J = 15.0 Hz, 1H), 4.42 (d, J = 15.0 Hz, 1H), 4.00 (ddd, J = 10.5, 6.0, 2.8 Hz, 1H), 3.15 (dd, J = 16.0, 2.8 Hz, 1H), 3.09–2.99 (m, 1H), 2.92 (ddd, J = 10.7, 7.8, 2.9 Hz, 1H), 2.83 (dd, J = 16.0, 6.0 Hz, 1H), 2.65–2.50 (m, 2H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 208.5, 155.8, 144.7, 135.4, 129.12, 129.10, 128.5, 128.1, 125.6, 123.9, 120.3, 117.7, 84.4, 81.2, 57.2, 42.6, 41.5, 33.9, 33.8, 29.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₉N₂O₂⁷⁹BrNa 457.0522; Found 457.0528; Calcd for C₂₃H₁₉N₂O₂⁸¹BrNa 459.0502; Found 459.0504.

Synthesis of 3p: A mixture of (*E*)-4-(3-hydroxynaphthalen-2-yl)but-3-en-2-one **2p** (21.2 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), and amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol, 20 mol, 0.112 mmol, 1.1 equiv) in

DCM (1.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **3p**: 21.4 mg (0.0527 mmol), as a white solid, 53% yield; mp = 213–214 °C; $[\alpha]_D^{25} = +273.0$ (c = 0.37 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane/i-PrOH = 80:20, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 22.99 min, t (major) = 31.23 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.68 (dd, J = 8.2, 3.9 Hz, 2H), 7.61 (s, 1H), 7.44–7.31 (m, 5H), 7.30 (d, J = 1.8 Hz, 2H), 7.25 (s, 1H), 6.95 (s, 1H), 4.94 (d, J

= 2.6 Hz, 1H), 4.61 (d, J = 14.8 Hz, 1H), 4.46 (d, J = 14.8 Hz, 1H),3.94–4.05 (m, 1H), 2.99–3.06 (m, 1H), 2.98 (d, J = 4.1 Hz, 2H), 2.90 (td, J = 9.1, 2.7 Hz, 1H), 2.56 (dd, J = 18.3, 3.8 Hz, 1H), 2.34 (dd, J = 18.3, 13.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.1, 152.0, 145.4, 135.5, 133.3, 129.9, 129.1, 128.5, 128.3, 128.2, 127.6, 126.6, 126.5, 125.3, 124.7, 120.2, 113.4, 82.4, 81.6, 57.1, 45.6, 41.4, 33.0, 32.1, 28.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₂N₂O₂Na 429.1573; Found 429.1573.

Synthesis of 3q: A mixture of (*E*)-4-(4-hydroxypyridin-3-yl)but-3-en-2-one **2q** (16.3 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at 4 $\,^{\circ}$ C for 60 h.

After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 2:1) gave product $3\mathbf{q}$: 22.1 mg (0.0619 mmol), as a white solid, 62% yield; mp = 135–137 °C; $[\alpha]_D^{25}$ = +63.1 (c = 0.70 in CHCl₃); 98% ee (the peaks of two enantiomers were assigned by using a mixture of $3\mathbf{q}$ and its enantiomer obtained with amine $\mathbf{C2}$), determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 70:30, 1.0 mL min⁻¹, λ = 254 nm]: t (major) = 46.27 min, t (minor) = 52.73min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.36 (s, 1H), 8.29 (d, J = 5.6 Hz, 1H), 7.43–7.34 (m, 3H), 7.27 (dd, J = 7.9, 1.8 Hz, 2H), 6.92 (t, J = 1.2 Hz, 1H), 6.77 (d, J = 5.6 Hz, 1H), 4.92 (d, J = 2.7 Hz, 1H), 4.56 (d, J = 14.8 Hz, 1H), 4.45 (d, J = 14.8 Hz, 1H), 3.82–3.1 (m, 1H), 3.06–2.97 (m, 1H), 2.97–2.81 (m, 3H), 2.58 (dd, J = 18.4, 3.7 Hz, 1H), 2.14 (dd, J = 18.4, 13.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 206.9, 160.6, 150.7, 149.5, 145.1, 135.1, 129.2, 128.6, 128.2, 120.6, 119.7, 112.7, 82.5, 82.0, 57.2, 44.4, 41.1, 32.8, 29.6, 28.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₀N₃O₂ 358.1550; Found 358.1549.

Synthesis of 3r: A mixture of (*E*)-1-(2-chloro-6-hydroxyphenyl)pent-1-en-3-one **2r** (21.0 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for

4 days. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **3r** as inseparable diastereomers: 20.6 mg (0.0510mmol), as a white solid, 51% yield; mp = 141-142 °C; $[\alpha]_D^{25} = +131.2$ (c = 0.59 in CHCl₃); 3.6:1 dr; 97% ee, 96% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane: i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t_1 (minor) = 8.76 min, t_1 (major) = 10.22 min, t_2 (minor) = 11.73 min, t_2 (major) = 12.17 min; for major diastereomer: ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.40–7.32 (m, 3H), 7.25–7.19 (m, 2H), 7.07–7.02 (m, 2H), 6.98 (s, 1H), 6.77 (dd, J = 7.6, 1.9 Hz, 1H), 4.72 (dd, J = 3.3, 1.5 Hz, 1H), 4.56 (d, J = 15.1 Hz, 1H), 4.45 (d, J = 15.1 Hz, 1H), 4.04 (ddd, J = 10.9, 6.2, 2.5 Hz, 1H), 2.99 (dd, J = 15.8, 2.6 Hz, 1H), 2.95–2.83 (m, 1H), 2.79–2.69 (m, 2H), 1.30 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 210.5, 154.7, 144.4, 134.3, 132.8, 128.1, 127.51, 127.50, 127.0, 123.8, 123.7, 121.1, 115.8, 83.5, 77.9, 55.9, 45.2, 40.2, 34.2, 33.4, 29.8, 13.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₂N₂O₂³⁷Cl 407.1335; Found 407.1337; Calcd for C₂₄H₂₂N₂O₂³⁵Cl 405.1364, Found 405.1369.

Synthesis of 3s: A mixture of (*E*)-4-(6-hydroxyphenyl)-2-oxobut-3-en-1-yl acetate **2s** (22.0 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (30.2 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20

mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for 60 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **3s** (as a mixture of diastereomers, only **3s-1** can be partially isolated): 26.5 mg (0.0640 mmol), as a white solid, 64% yield; mp (**3s-1**) = 113–115 $^{\circ}$ C; $[\alpha]_{D}^{25}$ (**3s-1**) = -74.0 (c = 0.47 in CHCl₃); 1:1 dr; **3s-1**: 91% ee, determined by HPLC analysis

[Daicel Chiralpak IB-H, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) =35.83 min, t (major) = 38.50 min; **3s-2:** 94% ee, determined by HPLC analysis [Daicel Chiralpak IB-H, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) =30.94 min, t (major) = 43.39 min; 1 H NMR (400 MHz, CDCl₃, **3s-1**): δ (ppm) 7.33 (dd, J = 5.0, 1.9 Hz, 3H), 7.25–7.15 (m, 1H), 7.14–7.05 (m, 3H), 7.01 (d, J = 8.1 Hz, 1H), 6.97 (s, 1H), 5.74 (d, J = 3.7 Hz, 1H), 5.03 (d, J = 3.7 Hz, 1H), 4.21 (d, J = 14.5 Hz, 1H), 4.11 (d, J = 14.5 Hz, 1H), 3.62 (ddd, J = 13.7, 9.2, 4.7 Hz, 1H), 3.45 (dd, J = 8.2, 3.7 Hz, 1H), 3.24 (ddd, J = 8.7, 3.7, 9.2 Hz, 1H), 2.97 (dd, J = 18.9, 4.7 Hz, 1H), 2.61 (dd, J = 18.9, 13.7 Hz, 1H), 2.23 (s, 3H); 13 C NMR (100 MHz, CDCl₃, **3s-1**): δ (ppm) 201.3, 170.2, 150.7, 149.3, 134.7, 129.1, 128.74, 128.71, 128.5, 128.4, 123.3, 122.3, 119.2, 117.6, 80.6, 78.6, 76.0, 53.9, 43.0, 35.2, 34.2, 27.2, 20.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₂₂N₂O₄Na 437.1472; Found 437.1478.

Synthesis of 3t: A mixture of (*E*)-4-(2-hydroxyphenyl)but-3-en-2-one **2a** (16.2 mg, 0.0999 mmol, 1.0 equiv) and N-(4-bromobenzyl) 3-cyanopyridin-1-ium bromide **1b** (38.6 mg, 0.109 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for 48 h. After completion, purification

by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **3t**: 37.3 mg (0.0859 mmol), as a white solid, 86% yield; mp = 211–212 °C; $[\alpha]_D^{25} = +63.8$ (c = 0.93 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min¹, $\lambda = 254$ nm]: t (minor) = 14.99 min, t (major) = 18.40 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.51 (d, J = 8.4 Hz, 2H), 7.14 (dd, J = 19.6, 8.3 Hz, 4H), 6.97 (dd, J = 8.0, 6.5 Hz, 1H), 6.89 (s, 1H), 6.83 (d, J = 8.0 Hz, 1H), 4.83 (d, J = 2.6 Hz, 1H), 4.53 (d, J = 15.0 Hz, 1H), 4.37 (d, J = 15.0 Hz, 1H), 3.76–3.85 (m, 1H), 3.04–2.93 (m, 1H), 2.75–2.95 (m, 3H), 2.54 (dd, J = 18.4, 3.8 Hz, 1H), 2.28 (dd, J = 18.4, 13.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.1, 153.7, 145.1, 134.6, 132.2, 129.9, 128.5, 128.4, 124.1, 123.2, 122.5, 120.0, 117.9, 82.1, 82.0, 56.5, 44.9, 41.3, 33.3, 31.8, 28.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₉N₂O₂⁷⁹BrNa 457.0522; Found 457.0524, Calcd for C₂₃H₁₉N₂O₂⁸¹BrNa 459.0502; Found 459.0503.

Synthesis of 3u: A mixture of (*E*)-4-(2-hydroxyphenyl)but-3-en-2-one **2a** (16.2 mg, 0.0999 mmol, 1.0 equiv) and N-(4-cyanobenzyl) 3-cyanopyridin-1-ium bromide **1c** (33.0 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for 60 h. After completion, purification by flash

chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product 3u: 28.1 mg (0.0738 mmol), as a white solid, 74% yield; mp = 117–118 °C; $[\alpha]_D^{25} = +68.0$ (c = 0.96 in CHCl₃); 97% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 28.86 min, t (major) = 33.63 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.68 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 7.3 Hz, 2H), 7.06–6.94 (m, 1H), 6.89 (s, 1H), 6.80 (dd, J = 8.5, 1.4 Hz, 1H), 4.84 (d, J = 2.6 Hz, 1H), 4.66 (d, J = 15.7 Hz, 1H), 4.48 (d, J = 15.7 Hz, 1H), 3.94–3.62 (m, 1H), 2.96–3.10 (m, 1H), 2.95–2.78 (m, 3H), 2.54 (dd, J = 18.3, 3.7 Hz, 1H), 2.28 (dd, J = 18.3, 13.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.0, 153.5, 145.0, 141.3, 132.8, 128.7, 128.53, 128.50, 124.0, 123.3, 119.8, 118.3, 117.9, 112.4, 82.8, 82.4, 56.6, 44.8, 41.2, 33.3, 31.8, 28.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₁₉N₃O₂Na 404.1375; Found 404.1371.

Synthesis of 3v: A mixture of (*E*)-4-(2-hydroxyphenyl)but-3-en-2-one **2a** (16.2 mg, 0.0999 mmol, 1.0 equiv) and N-(2-methylbenzyl) 3-cyanopyridin-1-ium bromide **1d** (31.7 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for 60 h. After completion, purification by flash chromatography on silica

gel (EtOAc/petroleum ether = 1:4) gave product 3v: 26.0 mg (0.0703 mmol), as a white solid, 70% yield; mp = 114–115 °C; $[\alpha]_D^{25} = +85.2$ (c = 0.65 in CHCl₃); 95% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 13.00 min, t (major) = 15.71 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.23–7.26 (m, 1H), 7.22–7.17 (m, 3H),

7.16–7.08 (m, 2H), 6.97 (td, J = 7.5, 1.3 Hz, 1H), 6.88–6.83 (m, 1H), 6.87 (s, 1H), 4.82 (d, J = 2.6 Hz, 1H), 4.58 (d, J = 14.3 Hz, 1H), 4.42 (d, J = 14.3 Hz, 1H), 3.76–3.86 (m, 1H), 2.90–3.00 (m, 1H), 2.92–2.78 (m, 3H), 2.54 (dd, J = 18.4, 3.8 Hz, 1H), 2.32 (s, 1H), 2.29 (dd, J = 18.4, 14 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.4, 153.9, 145.1, 137.1, 133.0, 131.1, 129.6, 128.7, 128.5, 128.4, 126.5, 124.2, 123.1, 120.4, 117.9, 82.0, 81.3, 55.0, 44.9, 41.4, 33.2, 31.9, 28.7, 19.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₂N₂O₂Na 393.1579; Found 393.1574.

Synthesis of 3w: A mixture of (*E*)-4-(2-hydroxyphenyl)but-3-en-2-one **2a** (16.2 mg, 0.0999 mmol, 1.0 equiv) and N-butyl 3-cyanopyridin-1-ium bromide **1e** (26.5 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel

(EtOAc/petroleum ether = 1:4) gave product $3\mathbf{w}$: 27.3 mg (0.0848 mmol), as a white solid, 85% yield; mp = 154 °C; $[\alpha]_D^{25} = +85.2$ (c = 0.65 in CHCl₃); 97% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 10.98 min, t (major) = 14.36 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.13 (t, J = 7.5 Hz, 2H), 6.98 (td, J = 7.5, 1.3 Hz, 1H), 6.85 (s, 1H), 6.83 (d, J = 7.8 Hz, 1H), 4.94 (d, J = 2.6 Hz, 1H), 3.92–3.84 (m, 1H), 3.39 (dt, J = 14.3, 7.3 Hz, 1H), 3.24 (dt, J = 14.3, 7.3 Hz, 1H), 3.01–2.78 (m, 4H), 2.53 (dd, J = 18.4, 3.8 Hz, 1H), 2.29 (dd, J = 18.4, 14.0 Hz, 1H), 1.56–1.68 (m, 2H), 1.43–1.31 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 208.5, 154.0, 145.3, 128.5, 128.4, 124.2, 123.1, 120.6, 118.1, 83.2, 79.8, 53.9, 45.1, 41.3, 33.4, 32.0, 31.5, 28.5, 19.8, 13.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₂N₂O₂Na 345.1573; Found 345.1576.

Synthesis of 3x: A mixture of (*E*)-4-(6-chloro-2-hydroxyphenyl)but-3-en-2-one **2n** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-(2-hydroxyethyl) 3-cyano-pyridin-1-ium bromide **1f** (25.1 mg, 0.110 mmol, 1.1 equiv), amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive **A1** (2.8 mg, 0.020 mol, 20 mol %) and **B1** (19.7 mg, 0.112 mmol, 1.1 equiv) in DCM (1.0 mL) was stirred at rt for 4 days. After completion, purification by flash chromatography on silica

gel (EtOAc/petroleum ether = 1:1) gave product 3x: 30.6 mg (0.0889 mmol), as a white semisolid, 89% yield; $[\alpha]_D^{25} = +152.0$ (c = 0.01 in CHCl₃); 93% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 10.44 min, t (major) = 20.96 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.16–7.00 (m, 2H), 6.93 (s, 1H), 6.78 (dd, J = 7.2, 2.2 Hz, 1H), 4.90 (s, 1H), 4.11 (ddd, J = 10.1, 5.9, 2.7 Hz, 1H), 3.90–3.74 (m, 2H), 3.56 (ddd, J = 14.9, 6.7, 4.2 Hz, 1H), 3.36 (ddd, J = 14.9, 5.3, 3.9 Hz, 1H), 3.16 (dd, J = 16.1, 2.7 Hz, 1H), 3.10–2.95 (m, 2H), 2.87 (dd, J = 16.1, 5.8 Hz, 1H), 2.62–2.45 (m, 2H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 208.5, 155.5, 144.8, 134.1, 128.8, 125.0, 124.1, 120.2, 116.9, 86.0, 80.9, 61.4, 57.0, 42.2, 41.2, 33.6, 31.9, 29.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₁₇N₂O₃³⁷Cl 347.0971; Found 347.0971; Calcd for C₁₈H₁₇N₂O₃³⁵Cl 345.1000; Found 345.0997.

Asymmetric reaction on a 1.0 mmol scale

A mixture of (*E*)-4-(2-hydroxyphenyl)but-3-en-2-one **2a** (162 mg, 1.00 mmol, 1.0 equiv) and N-benzyl 3-cyanopyridin-1-ium bromide **1a** (302 mg, 1.10 mmol, 1.1 equiv), amine **C1** (65.0 mg, 0.20 mmol, 20 mol %), acid additive **A1** (28.0 mg, 0.200 mmol, 20 mol %) and **B1** (197 mg, 1.10 mmol, 1.1 equiv) in DCM (10.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **3a**: 263.4 mg (0.739 mmol), as a white solid, 74% yield; 98% ee.

4.2 General procedure for dearomative cascade reaction with enones 2 and activated N-alkyl quinolinium salts 4

General procedure B: A mixture of activated N-alkyl quinolinium salt **4a** (0.12 mmol, 1.2 equiv), enone **2** (0.1 mmol, 1.0 equiv), amine **C2** (20 mol %), acid **A2** (20 mol %) and Na₂HPO₄ (0.12 mmol, 1.2 equiv) were stirred in DCE (2.0 mL) at rt, and the reaction was monitored by TLC. After completion, the product **5** were obtained by flash chromatography on silica gel. The racemic **5** was obtained under the catalysis of (±)-1,2-diphenylethane-1,2-diamine. The enantiomers were obtained with amine **C4**.

Synthesis of 5a: A mixture of (*E*)-4-(2-hydroxyphenyl)but-3-en-2-one **2a** (16.2 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.018 mol, 20 mol %) and Na₂HPO₄ (17.0 mg, 0.120 mmol, 1.2 equiv) in DCE (2.0 mL) was

stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product 5a: 29.9 mg (0.0702 mmol), as a yellow solid, 70% yield, mp = 196 °C; [α] α 0° = 10.4 (α 0 = 0.87 in CHCl3); 89% ee, determined by HPLC analysis [Daicel Chiralpak ID, α 1.0 mL min⁻¹, α 1.0 mL min⁻¹, α 2.54 nm]: t (minor) = 10.64 min, t (major) = 10.64 min; th NMR (400 MHz, CDCl3): α 2.6 (ppm) 8.03 (d, α 3 = 10.64 min, the first of the first of α 4.1 minor in the first of α 5 (ppm) 8.03 (d, α 5 = 10.64 min, the first of α 6 (ppm) 8.03 (d, α 6 = 10.64 min, the first of α 6 (ppm) 8.03 (d, α 7 = 10.64 min, the first of α 8 (ppm) 8.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 8.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 8.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 8.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 8.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 8.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 8.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 8.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 8.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 = 10.64 min, the first of α 9 (ppm) 9.03 (d, α 9 =

128.5, 128.3, 127.8, 126.5, 125.4, 124.9, 124.5, 123.2, 123.1, 118.1, 112.5, 87.2, 55.0, 45.1, 44.9, 33.3, 32.4, 31.8; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{22}N_2O_4Na$ 449.1472; Found 449.1472.

Synthesis of ent-5a: A mixture of (*E*)-4-(2-hydroxyphenyl)but-3-en-2-one **2a** (16.2 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C4** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol %) and Na₂HPO₄ (17.0 mg, 0.120 mmol, 1.2 equiv) in DCE (2.0 mL) was

stirred at rt for 60 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **ent-5a**: 28.2 mg (0.0662 mmol), as a yellow solid, 66% yield, $[\alpha]_D^{25} = -12.5$ (c = 0.59 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 18.07 min, t (major) = 16.48 min.

Synthesis of 5b: A mixture of (*E*)-4-(2-hydroxy-3-methylphenyl)but-3-en-2-one **2b** (17.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **5a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 20 mol, 1.2 equiv)

in DCE (1.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **5b**: 29.6 mg (0.0672 mmol), as a yellow solid, 67% yield; mp = 138–140 °C; $[\alpha]_D^{25} = -32.7$ (c = 0.41 in CHCl₃); 84% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 15.78 min, t (major) = 17.10 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.04 (d, J = 2.7 Hz, 1H), 7.96 (dd, J = 9.2, 2.7 Hz, 1H), 7.43–7.32 (m, 4H), 7.30 (dd, J = 6.3, 2.4 Hz, 1H), 7.03–6.93 (m, 2H), 6.92–6.82 (m, 1H), 6.69 (d, J = 9.2 Hz, 1H), 5.19 (d, J = 2.8 Hz, 1H), 4.89 (s, 2H), 4.04–3.87 (m, 1H), 3.74–3.50 (m, 1H), 3.23–3.14 (m, 1H), 3.07 (dd, J = 16.1, 5.0 Hz, 1H), 2.83 (dd, J = 16.1, 3.0 Hz, 1H), 2.76 (dd, J = 18.5, 14.3 Hz, 1H), 2.60 (dd, J = 18.5, 4.3 Hz, 1H), 2.10 (s, 3H); ¹³C NMR

(100 MHz, CDCl₃): δ 208.9, 152.4, 147.1, 139.6, 136.3, 129.4, 129.0, 127.7, 127.5, 126.4, 126.0, 125.4, 124.7, 124.5, 123.0, 122.5, 112.4, 87.7, 55.1, 45.3, 45.0, 33.2, 32.6, 32.1, 15.7; HRMS (ESITOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₄N₂O₄Na 463.1628; Found 463.1632.

Synthesis of 5c: A mixture of (*E*)-4-(3-chloro-2-hydroxyphenyl)but-3-en-2-one **2c** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 20 mol, 1.2 equiv)

in DCE (2.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product $\mathbf{5c}$: 26.6 mg (0.0578 mmol), as a yellow solid, 58% yield; mp = 124–126 °C; $[\alpha]_D^{25} = -56.7$ (c = 0.65 in CHCl₃); 81% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 15.83 min, t (major) = 19.60 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.03 (d, J = 2.7 Hz, 1H), 7.96 (dd, J = 9.2, 2.6 Hz, 1H), 7.46–7.31 (m, 4H), 7.34–7.25 (m, 1H), 7.19 (dd, J = 7.8, 1.5 Hz, 1H), 7.06 (dd, 1H), 6.96–6.86 (m, 1H), 6.74 (d, J = 9.2 Hz, 1H), 5.21 (d, J = 2.8 Hz, 1H), 4.94 (d, J = 16.9 Hz, 1H), 4.88 (d, J = 16.9 Hz, 1H), 4.03–3.94 (m, 1H), 3.73–3.59 (m, 1H), 3.27–3.14 (m, 1H), 3.09 (dd, J = 16.1, 5.0 Hz, 1H), 2.82 (dd, J = 16.1, 3.0 Hz, 1H), 2.73 (dd, J = 18.6, 13.9 Hz, 1H), 2.62 (dd, J = 18.6, 4.6 Hz, 1H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 208.4, 150.1, 146.9, 139.8, 136.0, 129.1, 128.9, 127.8, 127.1, 126.9, 126.6, 125.3, 124.6, 123.4, 123.3, 122.8, 112.6, 88.1, 54.8, 45.2, 44.8, 33.1, 32.8, 31.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₁N₂O₄³⁷Cl 485.1053; Found 485.1059; Calcd for C₂₆H₂₁N₂O₄³⁵Cl 483.1082; Found 483.1080.

Synthesis of 5d: A mixture of (E)-4-(2-hydroxy-4-methylphenyl)but-3-en-2-one **2d** (17.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), and amine **C2** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 20 mol, 1.2 mg, 0.120 mmol, 1.2

equiv) in DCE (2.0 mL) was stirred at rt for 60 h. After completion, purification by flash

chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **5d**: 29.1 mg (0.0661 mmol), as a yellow solid, 66% yield; mp = 106-108 °C; $[\alpha]_D^{25} = -27.1$ (c = 0.73 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 17.02 min, t (major) = 15.70 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.03 (d, J = 2.7 Hz, 1H), 7.95 (dd, J = 9.2, 2.7 Hz, 1H), 7.43–7.27 (m, 5H), 7.03 (d, J = 7.9 Hz, 1H), 6.80 (dd, J = 8.0, 1.8 Hz, 1H), 6.69 (d, J = 9.2 Hz, 1H), 6.65 (d, J = 1.8 Hz, 1H), 5.19 (d, J = 2.7 Hz, 1H), 4.91 (d, J = 17.0 Hz, 1H), 4.82 (d, J = 17.0 Hz, 1H), 4.02–3.86 (m, 1H), 3.68–3.55 (m, 1H), 3.17 (td, J = 9.0, 2.8 Hz, 1H), 3.03 (dd, J = 16.2, 4.7 Hz, 1H), 2.85 (dd, J = 16.1, 3.1 Hz, 1H), 2.70 (dd, J = 18.4, 14.0 Hz, 1H), 2.60 (dd, J = 18.4, 4.6 Hz, 1H), 2.24 (s, 3H); 13 C NMR (100 MHz, CDCl₃): δ 209.1, 154.0, 147.1, 139.6, 138.5, 136.4, 129.0, 128.2, 127.7, 126.4, 125.4, 124.5, 124.2, 123.1, 121.6, 118.4, 112.5, 87.2, 55.0, 45.1, 44.9, 33.2, 32.1, 31.7, 21.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₄N₂O₂Na 463.1628; Found 463.1624.

Synthesis of 5e: A mixture of (E)-4-(4-chloro-2-hydroxyphenyl)but-3-en-2-one **2f** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 1.20 mmol, 1.20 mmol, 1.20 mol, 1.20

equiv) in DCE (1.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product $\mathbf{5e}$: 25.2 mg (0.0548 mmol), as a yellow solid, 55% yield; mp = 127–128 °C; $[\alpha]_D^{25} = -40.0$ (c = 0.45 in CHCl₃); 83% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 18.50 min, t (major) = 16.15 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.03 (d, J = 2.7 Hz, 1H), 7.96 (dd, J = 9.2, 2.6 Hz, 1H), 7.45–7.28 (m, 5H), 7.08 (d, J = 8.4 Hz, 1H), 6.96 (dd, J = 8.4, 2.1 Hz, 1H), 6.86 (d, J = 2.1 Hz, 1H), 6.72 (d, J = 9.2 Hz, 1H), 5.19 (d, J = 2.8 Hz, 1H), 4.91 (d, J = 16.9 Hz, 1H), 4.81 (d, J = 16.9 Hz, 1H), 3.98–3.85 (m, 1H), 3.73–3.56 (m, 1H), 3.19 (td, J = 9.1, 2.8 Hz, 1H), 3.06 (dd, J = 16.2, 4.8 Hz, 1H), 2.83 (dd, J = 16.2, 3.1 Hz, 1H), 2.72–2.52 (m, 2H); I C NMR (100 MHz, CDCl₃): δ (ppm) 208.3, 154.9, 146.8, 139.8, 136.1, 133.5, 129.5, 129.1, 127.9, 126.5, 125.3, 124.5, 123.5, 123.4, 122.9, 118.3, 112.6, 87.5, 55.0, 44.9, 44.8, 33.0, 32.1, 31.6; HRMS

(ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{21}N_2O_4^{37}Cl$ 485.1053; Found 485.1060; Calcd for $C_{26}H_{21}N_2O_4^{35}Cl$ 483.1082; Found 483.1074.

Synthesis of ent-5e: A mixture of (*E*)-4-(4-chloro-2-hydroxyphenyl) but-3-en-2-one **2f** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C4** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 20 mol, 0.120 mmol, 1.2

equiv) in DCE (2.0 mL) was stirred at rt for 60 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:5) gave product **ent-5e**: 30.9 mg (0.0672 mmol), as a yellow solid, 67% yield; $[\alpha]_D^{25} = +35.6$ (c = 0.82 in CHCl₃); 88% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 15.60 min, t (major) =17.80 min.

Synthesis of 5f: A mixture of (*E*)-4-(2-hydroxy-5-methylphenyl)but-3-en-2-one **2g** (17.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 0.120 mmol, 1.2 equiv)

in DCE (2.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **5f**: 34.4 mg (0.0782 mmol), as a yellow solid, 78% yield; mp = 110-112 °C; $[\alpha]_D^{25} = +32.0$ (c = 0.79 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 16.14 min, t (major) = 17.49 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.03 (d, J = 2.7 Hz, 1H), 7.95 (dd, J = 9.2, 2.7 Hz, 1H), 7.41–7.27 (m, 5H), 6.94 (d, J = 2.1 Hz, 1H), 6.91 (dd, J = 8.3, 2.1 Hz, 1H), 6.73 (d, J = 8.2 Hz, 1H), 6.69 (d, J = 9.3 Hz, 1H), 5.16 (d, J = 2.6 Hz, 1H), 4.90 (d, J = 17.0 Hz, 1H), 4.81 (d, J = 17.0 Hz, 1H), 3.99–3.86 (m, 1H), 3.70–3.51 (m, 1H), 3.16 (td, J = 9.1, 2.8 Hz, 1H), 3.04 (dd, J = 16.3, 4.8 Hz, 1H), 2.87 (dd, J = 16.2, 3.1 Hz, 1H), 2.73 (dd, J = 18.4, 14.1 Hz, 1H), 2.60 (dd, J = 18.4, 4.3 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 209.0, 151.9, 147.1,

139.6, 136.3, 132.4, 129.1, 129.0, 128.7, 127.7, 126.4, 125.3, 124.5, 124.4, 123.0, 117.8, 112.4, 87.2, 54.9, 45.0, 45.0, 33.2, 32.3, 31.7, 20.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₄N₂O₂Na 463.1628; Found 463.1622.

$$\begin{array}{c} O \\ H \\ \hline H \\ \hline H \\ \hline H \\ \hline Sg \\ Ph \\ \end{array}$$

Synthesis of 5g: A mixture of (*E*)-4-(2-hydroxy-5-methoxyphenyl) but-3-en-2-one **2h** (19.2 mg, 0.1 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4mg, 0.120 mmol, 1.2 equiv), amine **C2** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol %) and Na₂HPO₄ (17.0 mg, 0.120 mmol,

1.2 equiv) in DCE (2.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **5g**: 33.5 mg (0.0734 mmol), as a yellow solid, 73% yield; mp = 115–117 °C; $[\alpha]_D^{25} = +38.3$ (c = 0.82 in CHCl₃); 88% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 13.74 min, t (major) = 16.79 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.02 (d, J = 2.6 Hz, 1H), 7.94 (dd, J = 9.2, 2.7 Hz, 1H), 7.40–7.27 (m, 5H), 6.77 (d, J = 8.7 Hz, 1H), 6.72–6.62 (m, 3H), 5.14 (d, J = 2.2 Hz, 1H), 4.90 (d, J = 17.0 Hz, 1H), 4.82 (d, J = 17.0 Hz, 1H), 3.97–3.88 (m, 1H), 3.73 (s, 3H), 3.69–3.57 (m, 1H), 3.16 (td, J = 9.1, 2.8 Hz, 1H), 3.06 (dd, J = 16.2, 4.9 Hz, 1H), 2.84 (dd, J = 16.2, 3.0 Hz, 1H), 2.76 (dd, J = 18.4, 14.2 Hz, 1H), 2.60 (dd, J = 18.4, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.9, 155.2, 148.0, 147.1, 139.6, 136.4, 129.0, 127.8, 126.5, 125.7, 125.4, 124.5, 123.1, 118.9, 114.4, 112.9, 112.4, 87.4, 55.7, 55.0, 45.1, 45.0, 33.1, 32.8, 31.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₄N₂O₅Na 479.1577; Found 479.1583.

Synthesis of 5h: A mixture of (E)-4-(5-fluoro-2-hydroxyphenyl)but-3-en-2-one **2j** (18.0 mg, 0.1 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 0.120 mmol, 1.2 equiv)

in DCE (2.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **5h**: 32.2 mg (0.0725 mmol), as a yellow

solid, 73% yield; mp = 117–119 °C; $[\alpha]_D^{25} = +5.8$ (c = 0.65 in CHCl₃); 87% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 15.07 min, t (major) = 16.92 min; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 2.7 Hz, 1H), 7.95 (dd, J = 9.2, 2.7 Hz, 1H), 7.45–7.28 (m, 5H), 6.94–6.77 (m, 3H), 6.70 (d, J = 9.2 Hz, 1H), 5.17 (d, J = 2.7 Hz, 1H), 4.91 (d, J = 17.0 Hz, 1H), 4.82 (d, J = 17.0 Hz, 1H), 4.00–3.84 (m, 1H), 3.77–3.52 (m, 1H), 3.18 (td, J = 9.1, 2.8 Hz, 1H), 3.08 (dd, J = 16.2, 4.9 Hz, 1H), 2.81 (dd, J = 16.2, 3.1 Hz, 1H), 2.71 (dd, J = 18.5, 13.6 Hz, 1H), 2.62 (dd, J = 18.6, 4.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.3, 158.2 (d, J = 241.7 Hz), 150.2, 146.9, 139.7, 136.1, 129.0, 127.8, 126.4, 126.3 (d, J = 7.3 Hz), 125.3, 124.5, 122.8, 119.4 (d, J = 8.2 Hz), 115.5 (d, J = 23.5 Hz), 114.5 (d, J = 23.4 Hz), 112.4, 87.4, 54.9, 44.9, 44.8, 32.8, 32.7, 31.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –119.4; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₁N₂O₄FNa 467.1378; Found 467.1370.

$$\begin{array}{c|c} O \\ H \\ \hline H \\ \hline H \\ \hline H \\ \hline Si \\ \end{array} \begin{array}{c} NO_2 \\ \\ Ph \\ \end{array}$$

Synthesis of 5i: A mixture of (*E*)-4-(5-chloro-2-hydroxyphenyl)but-3-en-2-one **2i** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 0.120 mmol, 1.2 equiv)

in DCE (2.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **5i**: 38.2 mg (0.0830 mmol), as a yellow solid, 83% yield; mp = 116-117 °C; $[\alpha]_D^{25} = +69.3$ (c = 0.15 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 16.58 min, t (major) = 17.45 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.03 (d, J = 2.7 Hz, 1H), 7.95 (dd, J = 9.1, 2.7 Hz, 1H), 7.41–7.28 (m, 5H), 7.13 (d, J = 2.5 Hz, 1H), 7.07 (dd, J = 8.7, 2.5 Hz, 1H), 6.78 (d, J = 8.7 Hz, 1H), 6.71 (d, J = 9.2 Hz, 1H), 5.17 (d, J = 2.8 Hz, 1H), 4.90 (d, J = 16.9 Hz, 1H), 4.81 (d, J = 16.9 Hz, 1H), 3.97–3.87 (m, 1H), 3.72–3.52 (m, 1H), 3.18 (td, J = 9.1, 2.8 Hz, 1H), 3.06 (dd, J = 16.3, 4.9 Hz, 1H), 2.83 (dd, J = 16.3, 3.1 Hz, 1H), 2.74–2.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.2, 152.9, 146.8, 139.8, 136.1, 129.1, 128.6, 128.3, 128.0, 127.9, 126.6, 126.5, 125.3, 124.5, 122.9, 119.6, 112.6, 87.4, 55.0, 44.91, 44.89, 32.9, 32.5, 31.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₁N₂O₄³⁷Cl 485.1053; Found 485.1060; Calcd for C₂₆H₂₁N₂O₄³⁵Cl

Synthesis of ent-5i: A mixture of (*E*)-4-(5-chloro-2-hydroxyphenyl) but-3-en-2-one **2i** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C4** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 20 mol, 1.2 equiv)

in DCE (2.0 mL) was stirred at rt for 60 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:5) gave product **5i**: 37.6 mg (0.0817 mmol), as a yellow solid, 82% yield, $[\alpha]_D^{25} = -70.8$ (c = 0.65 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, $\lambda = 254$ nm]: t (minor) = 18.50 min, t (major) = 17.11 min.

Synthesis of 5j: A mixture of (*E*)-4-(2-hydroxy-6-methylphenyl)but-3-en-2-one **2m** (17.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 20 mol, 1.2 equiv)

in DCE (2.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product 5j: 25.2 mg (0.0573 mmol), as a yellow solid, 57% yield; mp = 219–220 °C; $[\alpha]_D^{25} = -3.5$ (c = 0.69 in CHCl₃); 81% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 15.10 min, t (major) = 19.80 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.04 (d, J = 2.4 Hz, 1H), 7.95 (dd, J = 9.2, 2.5 Hz, 1H), 7.38–7.31 (m, 2H), 7.31–7.27 (m, 3H), 7.07–6.99 (m, 1H), 6.84 (d, J = 7.5 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 6.65 (d, J = 9.1 Hz, 1H), 5.05 (d, J = 2.2 Hz, 1H), 4.85 (m, 2H), 4.16–4.05 (m, 1H), 3.79–3.64 (m, 1H), 3.30–3.17 (m, 1H), 3.14–2.95 (m, 2H), 2.66 (dd, J = 15.6, 2.3 Hz, 1H), 2.59 (dd, J = 19.2, 4.2 Hz, 1H), 2.32 (s, 3H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 209.3, 155.2, 146.6, 139.3, 136.8, 136.2, 129.0, 127.8, 127.7, 126.3, 125.6, 125.4, 125.2, 124.8, 123.1, 116.1, 111.8, 88.7, 54.1, 44.6, 43.3, 34.0, 33.5, 31.2, 19.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd

Synthesis of 5k: A mixture of (*E*)-4-(6-chloro-2-hydroxyphenyl)but-3-en-2-one **2n** (19.6 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 20 mol, 1.2 equiv)

in DCE (2.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:6) gave product $\mathbf{5k}$: 20.1 mg (0.0436 mmol), as a yellow solid, 44% yield; mp = 246 °C; $[\alpha]_D^{25} = 65.2$ (c = 0.84 in CHCl₃); 80% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 15.67 min, t (major) = 17.48min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.06 (dd, J = 2.6, 0.7 Hz, 1H), 7.98 (dd, J = 9.2, 2.7 Hz, 1H), 7.40–7.32 (m, 2H), 7.32–7.26 (m, 3H), 7.12–7.03 (m, 2H), 6.81 (dd, J = 7.0, 2.3 Hz, 1H), 6.68 (d, J = 9.2 Hz, 1H), 5.09 (dd, J = 3.1, 1.4 Hz, 1H), 4.89 (d, J = 17.5 Hz, 1H), 4.83 (d, J = 17.5 Hz, 1H), 4.29–4.17 (m, 1H), 3.80–3.67 (m, 1H), 3.31–3.17 (m, 1H), 3.14–2.99 (m, 2H), 2.98 (dd, J = 19.0, 14.2 Hz, 1H), 2.62 (ddd, J = 19.0, 4.7, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 209.1, 156.0, 146.3, 139.6, 136.0, 133.8, 129.1, 128.7, 127.8, 126.3, 125.3, 124.9, 124.8, 124.6,122.9, 117.1, 112.0, 89.1, 54.3, 44.8, 42.5, 33.5, 33.2, 32.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₁N₂O₄³⁷Cl 485.1053; Found 485.1068; Calcd for C₂₆H₂₁N₂O₄³⁵Cl 483.1082; Found 483.1082.

$$\begin{array}{c|c} & O \\ & H \\ \hline & H \\ \hline$$

Synthesis of 5l: A mixture of (*E*)-4-(3,5-dibromo-2-hydroxyphenyl) but-3-en-2-one **2t** (31.8 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 20 mol, 1.20 mmol, 1.2

equiv) in DCE (2.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **51**: 37.0 mg (0.0636 mmol), as a yellow solid, 64% yield; mp = 146–148 °C; $\lceil \alpha \rceil_D^{25} = +69.3$ (c = 0.15 in CHCl₃); 80% ee,

determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 17.23 min, t (major) = 19.90 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.05–7.99 (m, 1H), 7.99–7.89 (m, 1H), 7.49 (s, 1H), 7.42–7.33 (m, 4H), 7.33–7.27 (m, 1H), 7.23 (d, J = 2.3 Hz, 1H), 6.75 (dd, J = 9.4, 3.2 Hz, 1H), 5.16 (s, 1H), 4.94 (d, J = 16.9 Hz, 1H), 4.87 (d, J = 16.9 Hz, 1H), 4.01–3.90 (m, 1H), 3.73–3.58 (m, 1H), 3.26–3.14 (m, 1H), 3.10 (dd, J = 16.2, 5.2 Hz, 1H), 2.78 (dd, J = 16.3, 3.0 Hz, 1H), 2.72–2.57 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 207.9, 150.3, 146.7, 139.9, 135.8, 134.2, 130.5, 129.1, 128.8, 127.9, 126.7, 125.3, 124.6, 122.7, 115.3, 113.5, 112.7, 88.4, 54.7, 45.1, 44.8, 33.0, 32.8, 31.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₂₁N₂O₄⁸¹Br⁷⁹Br 584.9842; Found 584.9848; C₂₆H₂₁N₂O₄⁷⁹Br₂ 582.9863; Found 582.9801. C₂₆H₂₁N₂O₄⁸¹Br₂ 586.9822; Found 586.9838.

Synthesis of 5m: A mixture of (*E*)-4-(3-hydroxynaphthalen-2-yl) but-3-en-2-one **1p** (21.2 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 0.120 mmol, 1.2 equiv)

in DCE (2.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **5m**: 25.3 mg (0.0532 mmol), as a yellow solid, 53% yield; mp = 235–236 °C; $[\alpha]_D^{25} = -47.1$ (c = 0.79 in CHCl₃); 85% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 24.03 min, t (major) = 21.64 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.96 (d, J = 2.6 Hz, 1H), 7.89 (dd, J = 9.2, 2.7 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.60–7.51 (m, 2H), 7.41–7.19 (m, 6H), 7.19 (d, J = 6.0 Hz, 2H), 6.65 (d, J = 9.2 Hz, 1H), 5.19 (d, J = 2.8 Hz, 1H), 4.87 (d, J = 16.9 Hz, 1H), 4.18–3.99 (m, 1H), 3.65–3.49 (m, 1H), 3.16 (td, J = 9.0, 2.8 Hz, 1H), 3.06 (dd, J = 16.3, 4.9 Hz, 1H), 2.93 (dd, J = 16.2, 3.2 Hz, 1H), 2.68 (dd, J = 18.5, 14.0 Hz, 1H), 2.55 (dd, J = 18.5, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.6, 152.5, 147.1, 139.7, 136.3, 133.4, 130.0, 129.1, 128.2, 127.8, 127.6, 126.58, 126.56, 126.5, 126.1, 125.3, 124.6, 124.5, 123.2, 113.5, 112.6, 87.5, 55.0, 45.8, 44.9, 33.1, 32.7, 31.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₄N₂O₄Na 499.1628; Found 499.1630.

Synthesis of 5n: A mixture of (*E*)-4-(2-hydroxyphenyl)but-3-en-2-one **2a** (16.2 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-cyanoquinolin-1-ium bromide **4b** (39.0 mg, 0.12 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol %) and Na₂HPO₄ (17.0 mg, 0.120 mmol, 1.2 equiv) in DCE (2.0 mL) was

stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **5n**: 31.1 mg (0.0766 mmol), as a yellow solid, 77% yield; mp = 119-121 °C; [α] $_D^{25}$ = +38.9 (c = 0.54 in CHCl₃); 82% ee, determined by HPLC analysis [Daicel Chiralpak IB, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 15.29 min, t (major) = 17.89 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.45–7.27 (m, 6H), 7.19–7.06 (m, 2H), 7.02–6.93 (m, 1H), 6.83 (dd, J = 8.1, 1.2 Hz, 1H), 6.69 (d, J = 8.7 Hz, 1H), 5.18 (d, J = 2.7 Hz, 1H), 4.85 (d, J = 17.0 Hz, 1H), 4.78 (d, J = 17.0 Hz, 1H), 4.01–3.83 (m, 1H), 3.65–3.49 (m, 1H), 3.17 (td, J = 9.1, 2.8 Hz, 1H), 3.04 (dd, J = 16.2, 4.8 Hz, 1H), 2.87 (dd, J = 16.3, 3.2 Hz, 1H), 2.69 (dd, J = 18.4, 14.3 Hz, 1H), 2.53 (dd, J = 18.4, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.9, 154.3, 145.2, 136.6, 133.1, 132.2, 129.0, 128.5, 128.3, 127.7, 126.5, 124.9, 123.7, 123.0, 119.5, 118.1, 113.2, 101.6, 87.2, 54.7, 45.0, 45.0, 33.3, 32.5, 31.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₂N₂O₂Na 429.1573; Found 429.1574.

Synthesis of 5o: A mixture of (*E*)-4-(2-hydroxyphenyl)but-3-en-2-one **2a** (16.2 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 7-nitroquinolin-1-ium bromide **4c** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol %) and Na₂HPO₄ (17.0 mg, 0.120 mmol, 1.2 equiv) in DCE (2.0 mL) was

stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **50**: 26.2 mg (0.0615 mmol), as a yellow solid, 62% yield; mp = 187–189 °C; $[\alpha]_D^{25}$ = +40.0 (c = 0.44 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 17.37 min, t (major) = 22.51 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.64 (dd, J = 8.3, 2.2 Hz, 1H), 7.59 (d, J = 2.2 Hz, 1H), 7.41–7.33 (m, 4H), 7.32–7.26 (m, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.17–7.08 (m, 2H), 6.97

(td, J = 7.5, 1.3 Hz, 1H), 6.84 (dd, J = 8.1, 1.3 Hz, 1H), 5.19 (d, J = 2.6 Hz, 1H), 4.88 (d, J = 16.4 Hz, 1H), 4.75 (d, J = 16.4 Hz, 1H), 4.02–3.89 (m, 1H), 3.68–3.55 (m, 1H), 3.18 (td, J = 9.1, 2.7 Hz, 1H), 3.02 (dd, J = 16.4, 4.6 Hz, 1H), 2.90 (dd, J = 16.4, 3.2 Hz, 1H), 2.73–2.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 209.1, 154.4, 147.9, 142.6, 136.5, 130.3, 129.7, 129.0, 128.38, 128.35, 127.8, 127.0, 124.7, 122.9, 118.2, 113.9, 107.7, 86.7, 54.7, 44.9, 44.8, 33.4, 32.5, 31.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₂N₂O₄Na 449.1472; Found 449.1468.

Synthesis of 5p: A mixture of (*E*)-4-(2-(phenylamino)phenyl)but-3-en-2-one **2u** (23.7 mg, 0.0999 mmol, 1.0 equiv) and N-benzyl 6-nitroquinolin-1-ium bromide **4a** (41.4 mg, 0.120 mmol, 1.2 equiv), amine **C3** (8.7 mg, 0.020 mol, 20 mol %), acid additive **A2** (3.0 mg, 0.020 mol, 20 mol, 20 mol, 0.120 mmol, 1.2 equiv)

in DCE (2.0 mL) was stirred at rt for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product $\mathbf{5p}$: 31.7 mg (0.0631 mmol), as a yellow solid, 63% yield; mp = 222–223 °C; $[\alpha]_D^{25} = -68.0$ (c = 0.75 in CHCl₃); 61% ee (the peaks of two enantiomers were assigned by using a mixture of $\mathbf{5p}$ and its enantiomer obtained with amine $\mathbf{C4}$), determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 25.71 min, t (major) = 28.23 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.09 (s, 1H), 7.85 (d, J = 9.2 Hz, 1H), 7.50–7.07 (m, 7H), 7.07–6.68 (m, 6H), 6.38 (dd, J = 29.0, 8.7 Hz, 2H), 5.20 (s, 1H), 4.29 (d, J = 16.5 Hz, 1H), 4.07 (d, J = 16.5 Hz, 1H), 3.93–3.82 (m, 1H), 3.79–3.58 (m, 1H), 3.41–3.22 (m, 1H), 3.09–2.64 (m, 4H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 209.4, 149.5, 145.5, 144.3, 139.2, 136.9, 129.8, 128.8, 128.0, 127.5, 127.5, 126.8, 126.7, 126.04, 125.96, 125.1, 124.3, 123.9, 121.3, 119.1, 113.5, 74.1, 53.8, 44.4, 44.2, 37.0, 32.3, 32.0; HRMS (ESI-TOF) m/z: [M + H]^+ Calcd for $C_{32}H_{28}N_3O_3$ 502.2125; Found 502.2127.

4.3 General procedure for dearomative cascade reaction with cyclic dienones 7 and activated N,4-dialkyl pyridinium salt 6

General procedure C: To the mixture of methyl (*E*)-3-(3-oxocyclohex-1-en-1-yl) acrylate **7** (0.1 mmol, 1.0 equiv), amine **C1** (20 mol %), and acid (*R*)-**A2** (40 mol %) in DCM (1.0 mL) were added Na₂HPO₄ (0.12 mmol, 1.2 equiv) and N-benzyl 4-methyl-3-nitropyridin-1-ium bromide **6** (0.12 mmol, 1.2 equiv) in four portions (12 h) at 25 °C. The reaction was monitored by TLC. After 48 h, the product **8** were obtained by flash chromatography on silica gel. The racemic **8** was generally obtained under the catalysis of (\pm)-1,2-diphenylethane-1,2-diamine.

Synthesis of 8a: A mixture of methyl (E)-3-(3-oxocyclohex-1-en-1-yl)acrylate **7a** (18.0 mg, 0.0999 mmol, 1.0 equiv) and amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive (R)-**A2** (6.1 mg, 0.040 mol, 40 mol %) in DCM (1.0 mL) was stirred at 25 °C. Na₂HPO₄ (17.0 mg, 0.120 mmol, 1.2 equiv) and N-benzyl 4-methyl-3-nitropyridin-1-ium bromide **6** (37.0 mg, 0.120 mmol, 1.2 equiv)

were added uniformly in four portions in the period of 12 h. After 48 h, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4) gave product **8a**: 30.5 mg (0.0747 mmol), as a yellow solid, 75% yield; mp = 185° C; [α] $_{D}^{25}$ = +344.7 (c = 0.89 in CHCl₃); >19:1 dr; 81% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane/i-PrOH = 80:20, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 17.37 min, t (major) = 22.51 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.30 (s, 1H), 7.52–7.27 (m, 3H), 7.28–7.11 (m, 2H), 4.55 (d, J = 15.4 Hz, 1H), 4.33 (d, J = 15.4 Hz, 1H), 4.16 (s, 1H), 3.72 (s, 3H), 2.92–2.85 (m, 1H), 2.83–2.76 (m, 2H), 2.74–2.63 (m, 1H), 2.27–2.12 (m, 2H), 2.06–1.92 (m, 1H), 1.92–1.85 (m, 2H), 1.84–1.75 (m, 1H), 1.70 (t, J = 13.1 Hz, 1H), 1.47–1.36 (m, 1H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 209.1, 174.0, 148.0, 131.8, 128.5, 128.0, 126.9, 126.8, 122.6, 119.9, 55.8, 54.9, 51.0, 48.1, 45.0, 35.8, 35.5, 33.3, 30.5, 27.5, 17.6; HRMS (ESI-TOF) m/z: [M + H] $^{+}$ Calcd for C₂₃H₂₅N₂O₅ 409.1758; Found 409.1756.

Synthesis of 8b: A mixture of (*E*)-3-styrylcyclohex-2-en-1-one **7b** (19.8 mg, 0.0999 mmol, 1.0 equiv) and amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive (*R*)-**A2** (6.1 mg, 0.040 mol, 40 mol %) in DCM (1.0 mL) was stirred at 25 $^{\circ}$ C. Na₂HPO₄ (17.0 mg, 0.120 mmol, 1.2 equiv) and N-benzyl 4-methyl-3-nitropyridin-1-ium bromide **6** (37.0 mg, 0.120 mmol, 1.2 equiv) were added

uniformly in four portions in the period of 12 h. After 48 h, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:5) gave product **8b**: 19.7 mg (0.0462 mmol), as a yellow solid, 46% yield; mp = 176 °C; $[\alpha]_D^{25}$ = +363.9 (c = 0.31 in CHCl₃); >19:1 dr; 65% ee, determined by HPLC analysis [Daicel Chiralpak IE-H, n-hexane/i-PrOH = 60:40, 1.0 mL min⁻¹, λ = 254 nm]: t (minor) = 25.71min, t (major) = 28.27 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.31 (s, 1H), 7.52–7.09 (m, 10H), 4.56 (d, J = 15.4 Hz, 1H), 4.35 (d, J = 15.4 Hz, 1H), 4.19 (s, 1H), 3.04–2.88 (m, 2H), 2.79–2.67 (m, 2H), 2.21 (s, 2H), 2.13–1.97 (m, 2H), 1.91–1.69 (m, 3H), 1.55–1.33 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 210.9, 149.0, 145.0, 132.9, 129.5, 129.0, 128.7, 128.1, 127.9, 127.0, 126.7, 125.1, 121.1, 56.8, 56.0, 49.5, 46.1, 39.1, 37.9, 36.8, 34.1, 31.7, 18.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₆N₂O₃Na 449.1836; Found 449.1840.

Synthesis of 8c: A mixture of (E)-3-(4-chlorostyryl)cyclohex-2-en-1-one **7c** (23.2 mg, 0.0999 mmol, 1.0 equiv) and amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive (R)-**A2** (6.1 mg, 0.040 mol, 40 mol %) in DCM (1.0 mL) was stirred at 25 °C. Na₂HPO₄ (17.0 mg, 0.120 mmol, 1.2 equiv) and N-benzyl 4-methyl-3-nitropyridin-1-ium bromide **6** (37.0 mg, 0.120 mmol, 1.2 equiv) were added uniformly in four portions in the period of 12 h. After 48 h, purification by flash chromatography on silica gel (EtOAc/petroleum ether =

1:5) gave product **8c**: 20.3 mg (0.0441 mmol), as a yellow solid, 44% yield; mp = 107–109 °C; $[\alpha]_D^{25}$ = +299.4 (c = 0.35 in CHCl₃); >19:1 dr; 69% ee, determined by HPLC analysis [Daicel Chiralpak IE-H, n-hexane/i-PrOH = 60:40, 1.0 mL min-1, λ = 254 nm]: t (minor) = 29.77 min, t (major) = 32.37 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.31 (s, 1H), 7.47–7.34 (m, 3H), 7.34–7.24 (m, 4H), 7.18 (d, J = 8.1 Hz, 2H), 4.56 (d, J = 15.4 Hz, 1H), 4.35 (d, J = 15.4 Hz, 1H), 4.19 (s, 1H), 2.97–2.79 (m, 2H), 2.70 (dd, J = 8.7, 2.4 Hz, 2H), 2.21 (s, 2H), 2.05 (d, J = 8.4 Hz, 2H), 1.88–1.68 (m, 3H), 1.48–

1.35 (m, 1H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 210.6, 149.0, 143.5, 132.8, 132.3, 129.5, 129.0, 128.7, 128.4, 128.0, 127.8, 124.8, 121.0, 56.9, 55.9, 49.4, 46.1, 39.1, 37.9, 36.3, 34.0, 31.7, 18.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for $C_{27}H_{25}N_2O_3^{37}Cl$ 485.1416; Found 485.1412; Calcd for $C_{27}H_{25}N_2O_3^{35}Cl$ 483.1446; Found 483.1412.

NO₂
NO₂
NO₂
NO₂
NO₂

Synthesis of 8d: A mixture of (*E*)-3-(4-nitrostyryl)cyclohex-2-en-1-one **7d** (24.3 mg, 0.0999 mmol, 1.0 equiv) and amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive (*R*)-**A2** (6.1 mg, 0.040 mol, 40 mol %) in DCM (1.0 mL) was stirred at 25 $^{\circ}$ C. Na₂HPO₄ (17.0 mg, 0.120 mmol, 1.2 equiv) and N-benzyl 4-methyl-3-nitropyridin-1-ium bromide **6** (37.0 mg, 0.120 mmol, 1.2 equiv) were added uniformly in four portions in the period of 12 h. After 48 h, purification by flash chromatography on silica gel (EtOAc/petroleum ether =

1:4) gave product **8d**: 28.5 mg (0.0605 mmol), as a yellow solid, 61% yield; mp = 137–142 °C; $[\alpha]_D^{25}$ = +403.8 (c = 0.63 in CHCl₃); >19:1 dr; 82% ee, determined by HPLC analysis [Daicel Chiralpak IG, n-hexane/i-PrOH = 60:40, 1.0 mL min-1, λ = 254 nm]: t (minor) = 47.40min, t (major) = 51.63 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.33 (s, 1H), 8.19 (d, J = 8.7 Hz, 2H), 7.49–7.33 (m, 5H), 7.27 (d, J = 6.1 Hz, 2H), 4.58 (d, J = 15.4 Hz, 1H), 4.37 (d, J = 15.4 Hz, 1H), 4.21 (s, 1H), 3.21–3.00 (m, 1H), 2.97–2.91 (m, 1H), 2.75 (dd, J = 8.4, 2.3 Hz, 2H), 2.24 (s, 2H), 2.05 (t, J = 10.1 Hz, 2H), 1.93–1.70 (m, 3H), 1.47 (td, J = 8.4, 8.0, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 210.2, 152.6, 149.2, 146.8, 132.7, 129.5, 129.0, 128.0, 127.9, 127.8, 124.4, 124.0, 121.0, 56.9, 55.9, 49.3, 46.0, 38.7, 37.7, 37.0, 33.6, 31.7, 18.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₅N₃O₅Na 494.1686; Found 494.1682.

Synthesis of 8e: A mixture of (E)-3-(4-methylstyryl)cyclohex-2-en-1-one **7e** (21.2 mg, 0.0999 mmol, 1.0 equiv) and amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive (R)-**A2** (6.1 mg, 0.040 mol, 40 mol %) in DCM (1.0 mL) was stirred at 25 °C. Na₂HPO₄ (17.0 mg, 0.120 mmol, 1.2 equiv) and N-benzyl 4-methyl-3-nitropyridin-1-ium bromide **6** (37.0 mg, 0.120 mmol, 1.2 equiv) were added uniformly in four portions in the period of 12 h. After 48 h,

purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:5) gave product **8e**: 21.7 mg (0.0493 mmol), as a yellow solid, 49% yield; mp = 201–204 °C; [α]_D²⁵ = +373.8 (c = 0.31 in CHCl₃); >19:1 dr; 66% ee, determined by HPLC analysis [Daicel Chiralpak IE, n-hexane/i-PrOH = 60:40, 1.0 mL min-1, λ = 254 nm]: t (minor) = 27.91min, t (major) = 35.36 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.31 (s, 1H), 7.47–7.32 (m, 3H), 7.27 (d, J = 6.3 Hz, 2H), 7.14 (s, 4H), 4.56 (d, J = 15.4 Hz, 1H), 4.35 (d, J = 15.4 Hz, 1H), 4.19 (s, 1H), 2.96–2.86 (m, 2H), 2.76–2.67 (m, 2H), 2.33 (s, 3H), 2.21 (s, 2H), 2.12–2.00 (m, 2H), 1.86–1.69 (m, 3H), 1.48–1.37 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 210.9, 148.9, 142.1, 136.2, 132.9, 129.5, 129.3, 129.0, 128.2, 127.8, 126.9, 125.1, 121.0, 56.8, 55.9, 49.5, 46.1, 39.3, 37.9, 36.4, 34.2, 31.7, 21.0, 18.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₈N₂O₃Na 463.1992; Found 463.1994.

Synthesis of 8f: A mixture of (*E*)-3-(prop-1-en-1-yl)cyclohex-2-en-1-one **7f** (13.6 mg, 0.0999 mmol, 1.0 equiv) and amine **C1** (6.5 mg, 0.020 mol, 20 mol %), acid additive (*R*)-**A2** (6.1 mg, 0.040 mol, 40 mol %) in DCM (1.0 mL) was stirred at 25 $^{\circ}$ C. Na₂HPO₄ (17.0 mg, 0.145 mmol, 1.45 equiv) and N-benzyl 4-methyl-3-nitropyridin-1-ium bromide **6** (37.0 mg, 0.145 mmol, 1.45

equiv) were added uniformly in five portions in the period of 16 h. After 48 h, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:8) gave product **8f**: 12.7 mg (0.0349 mmol), as a yellow solid, 35% yield; mp = 74–76 °C; $[\alpha]_D^{25}$ = +546.7 (c = 0.26 in CHCl₃); >19:1 dr; 85% ee, determined by HPLC analysis [Daicel Chiralpak IE-H, n-hexane/i-PrOH = 60:40, 1.0 mL min-1, λ = 254 nm]: t (minor) = 23.54 min, t (major) = 21.13 min; 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.29 (s, 1H), 7.49–7.32 (m, 3H), 7.30–7.14 (m, 2H), 4.54 (d, J = 15.5 Hz, 1H), 4.32 (d, J = 15.5 Hz, 1H), 4.14 (s, 1H), 2.92–2.72 (m, 1H), 2.50 (dd, J = 17.8, 5.0 Hz, 1H), 2.30–2.18 (m, 1H), 2.13 (s, 2H), 2.05–1.94 (m, 1H), 1.89 (t, J = 11.9 Hz, 1H), 1.84–1.70 (m, 1H), 1.58–1.47 (m, 1H), 1.42–1.29 (m, 1H), 1.29–1.17 (m, 2H), 1.04 (d, J = 6.5 Hz, 3H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 211.3, 148.9, 132.9, 129.4, 128.9, 128.2, 127.8, 125.0, 121.3, 56.8, 55.9, 49.6, 46.2, 40.8, 37.5, 34.4, 31.8, 25.3, 21.9, 18.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₂₄N₂O₃Na 387.1679; Found 387.1684.

5. Transformations of products

Synthesis of 10: To a solution of **3a** (35.6 mg, 0.0999 mmol) and 2-aminobenzaldehyde **9** (14.5 mg, 0.119 mol, 1.2 equiv) in EtOH (1.0 mL) was added KOH (6.7 mg, 0.12 mol, 1.2 equiv). The mixture was stirred at room temperature for 18 h. Then the mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1:4 to 1:3) gave product **10**: 36.8 mg (0.0831 mmol), as a white solid, 83% yield; mp = 239–240 °C; [α] $_{\rm D}^{25}$ = +153.3 ($_{\rm C}$ = 0.36 in CHCl₃); 99% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, $_{\rm R}$ hexane/ $_{\rm I}$ -PrOH = 60/40, 1.0 mL min-1, $_{\rm R}$ = 254 nm]: t (minor) = 18.30 min, t (major) = 11.74 min; $_{\rm R}^{\rm I}$ H NMR (400 MHz, CDCl₃): δ 8.07 (s, 1H), 8.01 (d, $_{\rm R}$ = 8.4 Hz, 1H), 7.85 (dd, $_{\rm R}$ = 8.1, 1.4 Hz, 1H), 7.72–7.61 (m, 1H), 7.53 (td, $_{\rm R}$ = 7.4, 6.8, 1.2 Hz, 1H), 7.43–7.28 (m, 5H), 7.09–7.01 (m, 1H), 6.94 (t, $_{\rm R}$ = 1.2 Hz, 1H), 6.89–6.81 (m, 2H), 6.79–6.68 (m, 1H), 5.02 (d, $_{\rm R}$ = 2.7 Hz, 1H), 4.68 (d, $_{\rm R}$ = 9.0 Hz, 1H), 4.61 (d, $_{\rm R}$ = 14.7 Hz, 1H), 4.46 (d, $_{\rm R}$ = 14.7 Hz, 1H), 3.26 (dd, $_{\rm R}$ = 14.4, 3.0 Hz, 1H), 3.00 (td, $_{\rm R}$ = 9.2, 2.7 Hz, 1H), 2.90 (t, $_{\rm R}$ = 13.9 Hz, 1H), 2.68–2.56 (m, 1H); $_{\rm R}$ C NMR (100 MHz, CDCl₃): δ (ppm) 160.2, 154.1, 146.7, 145.6, 135.8, 134.1, 132.9, 129.9, 129.3, 129.0, 128.9, 128.4, 128.3, 128.1, 127.6, 127.3, 126.3, 123.2, 122.3, 120.4, 117.7, 83.8, 82.5, 57.2, 40.0, 36.7, 34.4, 33.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₂₄N₃O 442.1914; Found 442.1920.

A mixture of product **8a** (40.8 mg, 0.0999 mmol) and 10% palladium on charcoal (40.8 mg, 0.0100 mmol, 10 mol %,) in methanol (2 mL) was purged with hydrogen. The mixture was stirred at room temperature for 3 h, filtered through celite, washed with DCM and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1:1 to 3:1) to give

product **12**: 12.0 mg (0.0419 mmol), as a white solid, 42% yield; mp = 203–204 °C; $[\alpha]_D^{25}$ = +119.5 (c = 0.37 in CHCl₃); 80% ee, determined by HPLC analysis [Daicel Chiralpak ID, n-hexane/i-PrOH = 60/40, 1.0 mL min-1, λ = 254 nm]: t (minor) = 20.71 min, t (major) = 23.97 min; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.87 (s, 1H), 3.77 (s, 3H), 3.73 (q, J = 4.1, 3.3 Hz, 1H), 2.93–2.71 (m, 2H), 2.58 (dd, J = 16.0, 11.0 Hz, 1H), 2.36 (d, J = 18.4 Hz, 1H), 2.28 (dt, J = 13.6, 2.2 Hz, 1H), 2.19–2.02 (m, 1H), 1.98–1.86 (m, 2H), 1.82–1.63 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 209.5, 174.9, 145.8, 139.8, 134.3, 134.1, 126.5, 54.2, 52.2, 48.3, 37.5, 37.0, 35.3, 31.0, 25.7, 24.3; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₆H₁₈N₂O₃ 287.1390; Found 287.1381.

6. More substrate exploration

Scheme S1. More exploration on the reactions with diverse enones

Then we explored the dearomative cascade reactions between other enones and pyridinium salt 1a under the catalysis of C1. Unfortunately, there was no success and results were outlined in the above Scheme S1.

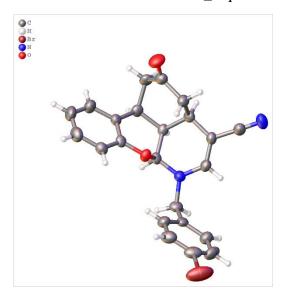
Scheme S2. More exploration on other pyridinium and quinolinium salts

We found the 3-cyano group was essential for the dearomative cascade reaction. When other 3-EWG substituted pyridinium salts were tested, the reaction was messy for the 3-NO₂ substituted pyridinium salt. In addition, the reaction didn't occur for the salts with other weaker electron withdrawing groups. In addition, the unsuccessful attempts were summarized in **Scheme S2**.

7. Proposed catalytic mechanism

Scheme S3 Proposed mechanism and transition state for the formation of 3a.

As outlined in Scheme S3, after condensation of chiral amine C1 with compound 2a, a cross dienamine intermediate I was formed and then attacked 1a from *Re*-face to give II. Then a Michael reaction occurred for the dearomatized enamine-type intermediates, followed by hydrolysis of III to regenerate the catalyst. Finally, the hydroxyl group captured iminium ion from *Si*-face to give the desired product 3a.


Scheme S4 Proposed reaction pathway for the formation of 8a.

As outlined in Scheme S4, **7a** first was condensed with chiral amine **C1** to form an iminium ion intermediate. On the other hand, the activated nucleophile **6a'** formed by the deprotonation of **6a**, attacked the iminium ion intermediate to deliver **int-1**, followed by dearomatization and tautomerization to give **int-3**, and then an intramolecular Michael addition occurred to furnish spirocyclic **int-4**. After the second aromatization and tautomerization, **int-5** was generated and the enamine moiety attacked the pyridinium ring, finally furnishing fused and bridged architecture **8** after the release of the catalyst.

8. Crystal data and structural refinement

8.1 Procedure for the recrystallization of 3t

To a 10 mL tube containing **3t** (20 mg) was added a 1:3 mixture of *n*-hexane and dichloromethane (about 3 mL). The mixture was heated until a clear solution was formed, which was kept aside overnight at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of **3t**. The data were collected by an Xcalibur E equipped with a Mo radiation source ($K\alpha = 0.71073 \text{ Å}$) at 293.15 K. CCDC 2022384 (**3t**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	3t
Empirical formula	$C_{23}H_{19}BrN_2O_2\\$
Formula weight	435.31
Temperature/K	293.15
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	5.7376(4)
b/Å	8.6079(7)
c/Å	39.542(3)
α/°	90

β/° 90

 $\gamma/^{\circ}$ 90

Volume/Å3 1952.9(3)

Z 4

 $\rho_{calc}g/cm^3$ 1.481

 μ/mm^{-1} 2.126

F(000) 888.0

Crystal size/mm³ $0.35 \times 0.3 \times 0.25$

Radiation $MoK\alpha (\lambda = 0.71073)$

 2Θ range for data collection/° 6.182 to 52.72

Index ranges $-6 \le h \le 7, -10 \le k \le 9, -49 \le 1 \le 48$

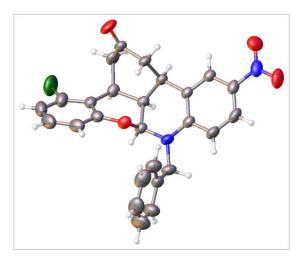
Reflections collected 11104

Independent reflections 3945 [$R_{int} = 0.0406$, $R_{sigma} = 0.0474$]

Data/restraints/parameters 3945/0/253

Goodness-of-fit on F^2 1.072

Final R indexes [$I \ge 2\sigma$ (I)] R1 = 0.0491, wR₂ = 0.1043


Final R indexes [all data] R1 = 0.0626, $wR_2 = 0.1144$

Largest diff. peak/hole / e Å^{-3} 0.25/-0.65

Flack parameter -0.004(6)

8.2 Procedure for the recrystallization of 5k

To an NMR tube containing 5k (25 mg) was added CDCl₃ (about 1.5 mL). Crystals were obtained by solvent evaporation at room temperature. The crystals were subjected for single crystal XRD to determine the absolute configuration of 5k. The data were collected by an Agilent Gemini equipped with a Cu radiation source ($K\alpha = 1.54184$ Å) at 296.11 K. CCDC 2022385 (5k) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

CI H NO2

5k (CCDC 2022385)

(ellipsoid contour probability 50%)

Identification code	5k
---------------------	----

 $Empirical \ formula \qquad \qquad C_{26}H_{21}ClN_2O_4$

Formula weight 460.90

Temperature/K 296.11

Crystal system orthorhombic

Space group P2₁2₁2₁

a/Å 8.9839(3)

b/Å 10.1735(3)

c/Å 23.7806(8)

α/°

β/° 90

γ/° 90

Volume/Å³ 2173.48(12)

Z 4

 $\rho_{cale}g/cm^3 \hspace{1.5cm} 1.408$

 μ/mm^{-1} 1.869

F (000) 960.0

Crystal size/mm³ $0.6 \times 0.4 \times 0.3$

Radiation $CuK\alpha (\lambda = 1.54184)$

2Θ range for data collection/° 7.434 to 142.634

Index ranges	$-7 \le h \le 10, -12 \le k \le 12, -25 \le l \le 28$
mack ranges	/ _ H _ 10, 12 _ K _ 12, 23 _ 1 _ 20

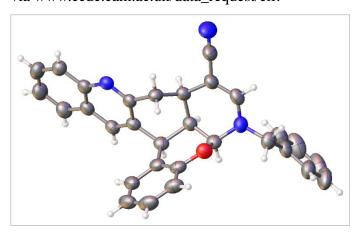
Reflections collected 11768

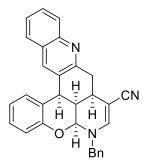
Independent reflections 4160 [$R_{int} = 0.0475$, $R_{sigma} = 0.0394$]

Data/restraints/parameters 4248/0/298

Goodness-of-fit on F^2 1.059

Final R indexes [I>= 2σ (I)] $R_1 = 0.0559$, $wR_2 = 0.1394$


Final R indexes [all data] $R_1 = 0.0559$, $wR^2 = 0.1464$


Largest diff. peak/hole / e Å⁻³ 0.26/-0.40

Flack parameter 0.005(13)

8.3 Procedure for the recrystallization of 10

To a 10 mL tube containing **10** (25 mg) was added a 4:1 mixture of EtOAc and dichloromethane (about 2 mL). A clear solution was formed by ultrasound treatment, which was kept aside for 2 days at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of **10**. The data were collected by an Agilent Gemini equipped with a Cu radiation source ($K\alpha = 1.54184$ Å) at 295.9(4) K. CCDC 2023072 (**10**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

10 (CCDC 2023072)

(ellipsoid contour probability 50%)

Identification code 10

Empirical formula $C_{30}H_{23}N_3O$

Formula weight 441.51

Temperature/K 295.9(4)

Crystal system orthorhombic

Space group $P2_12_12_1$

a/Å 9.3601(3)

b/Å 12.7584(4)

c/Å 18.9146(6)

 α / $^{\circ}$

β/°

γ/° 90

Volume/ $Å^3$ 2258.78(12)

Z 4

 $\rho_{calc}g/cm^3 1.298$

 μ/mm^{-1} 0.626

F (000) 928.0

Crystal size/mm³ $0.55 \times 0.3 \times 0.2$

Radiation $CuK\alpha (\lambda = 1.54184)$

 2Θ range for data collection/° 8.36 to 128.742

Index ranges $-10 \le h \le 6, -14 \le k \le 14, -21 \le 1 \le 22$

Reflections collected 10552

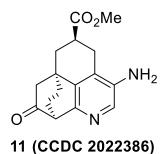
Independent reflections 3761 [$R_{int} = 0.0615$, $R_{sigma} = 0.0488$]

Data/restraints/parameters 3761/14/307

Goodness-of-fit on F^2 1.037

Final R indexes [I>= 2σ (I)] $R_1 = 0.0673$, $wR_2 = 0.1655$


Final R indexes [all data] $R_1 = 0.0711$, $wR_2 = 0.1733$


Largest diff. peak/hole / e Å-3 0.23/-0.38

Flack parameter -0.1(4)

8.4 Procedure for the recrystallization of 11

To a 10 mL tube containing **11** (15 mg) was added a 5:1 mixture of EtOAc and dichloromethane (about 2 mL). A clear solution was formed by ultrasound treatment, which was kept aside for 2 days at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of **11**. The data were collected by an Agilent Gemini equipped with a Cu radiation source ($K\alpha = 1.54184$ Å) at 296.3(4) K. CCDC 2022386 (**11**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	11
Empirical formula	$C_{16}H_{18}N_2O_3$
Formula weight	286.32
Temperature/K	296.3(4)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	5.70829(12)
$b/ m \AA$	11.8370(3)
c/Å	21.2874(5)
α / °	90
β/°	90
γ/°	90

Volume/Å³ 1438.37(6)

Z 4

 $\rho_{calc}g/cm^3$ 1.322

 μ/mm^{-1} 0.753

F (000) 608.0

Crystal size/mm³ $0.6 \times 0.4 \times 0.2$

Radiation $CuK\alpha (\lambda = 1.54184)$

2Θ range for data collection/° 8.548 to 134.106

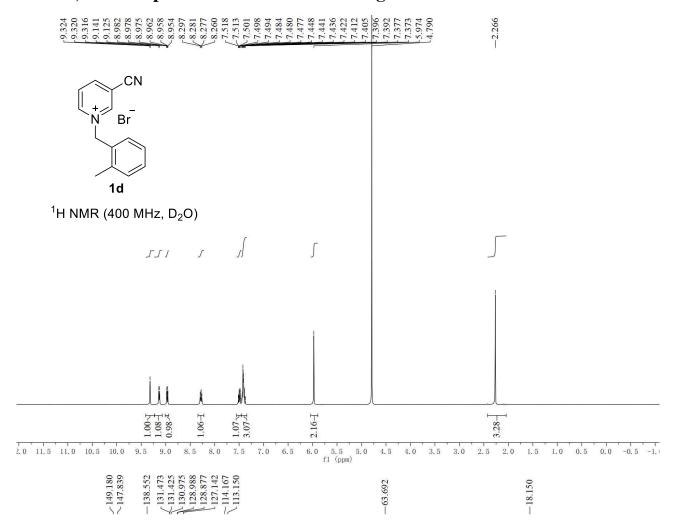
Index ranges $-6 \le h \le 4, -14 \le k \le 14, -25 \le l \le 25$

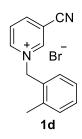
Reflections collected 7455

Independent reflections $2564 [R_{int} = 0.0407, R_{sigma} = 0.0374]$

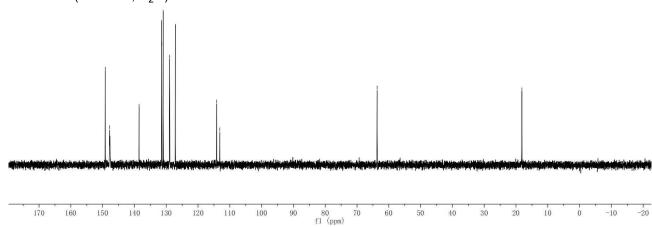
Data/restraints/parameters 2564/0/198

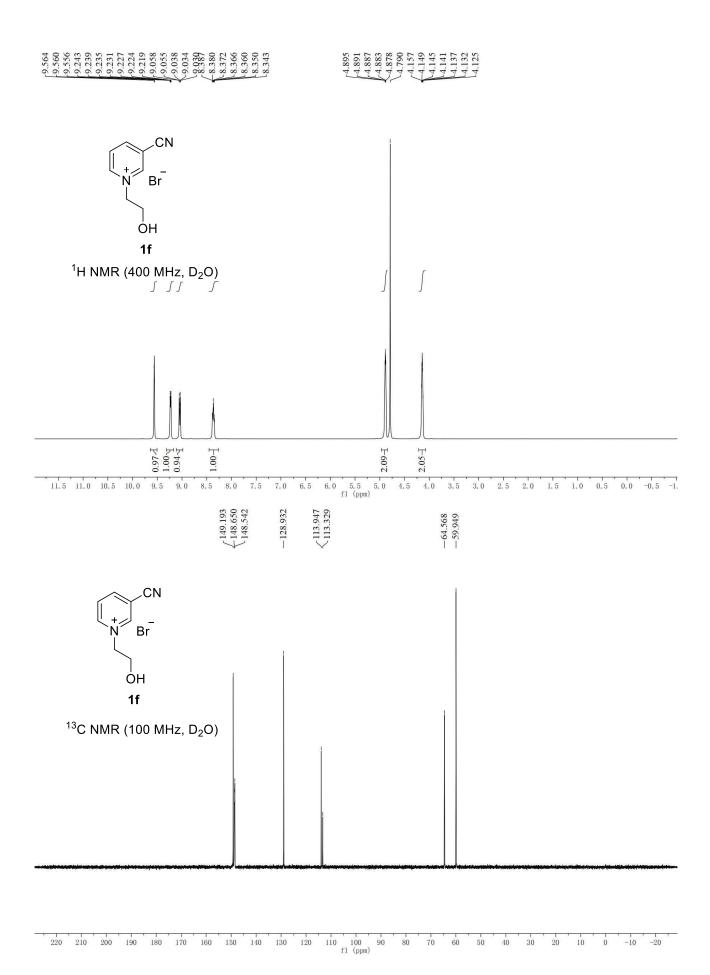
Goodness-of-fit on F^2 1.057

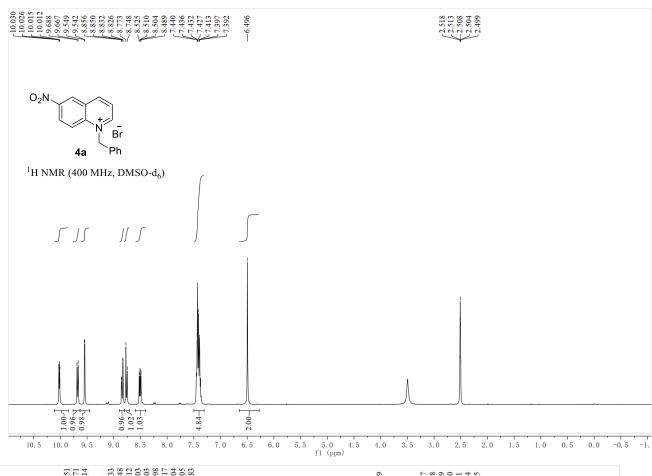

Final R indexes [I>= 2σ (I)] $R_1 = 0.0464$, $wR_2 = 0.1257$

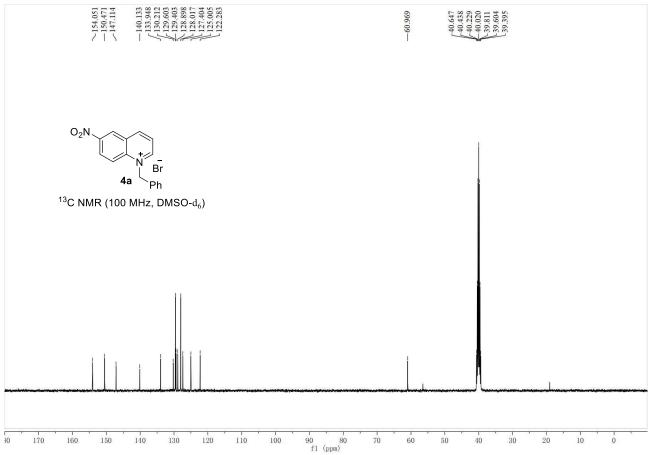

Final R indexes [all data] $R_1 = 0.0495$, $wR_2 = 0.1304$

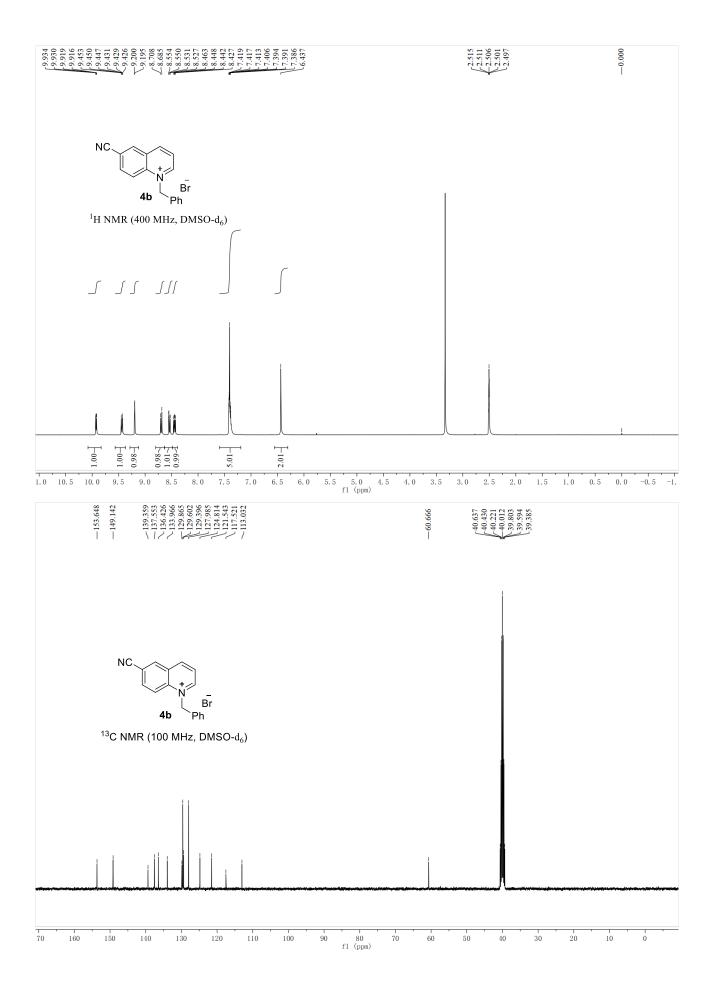
Largest diff. peak/hole / e Å-3 0.19/-0.22

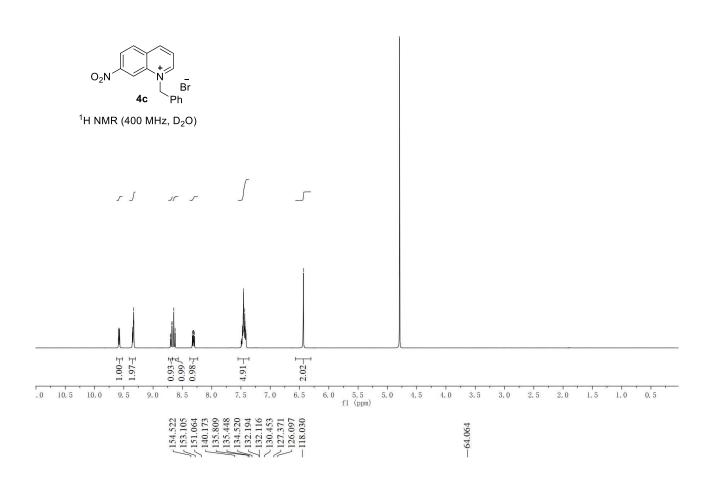

Flack parameter -0.1(2)

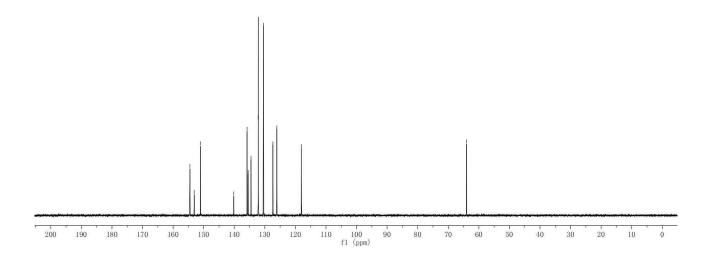

9. NMR, HRMS spectra and HPLC chromatograms

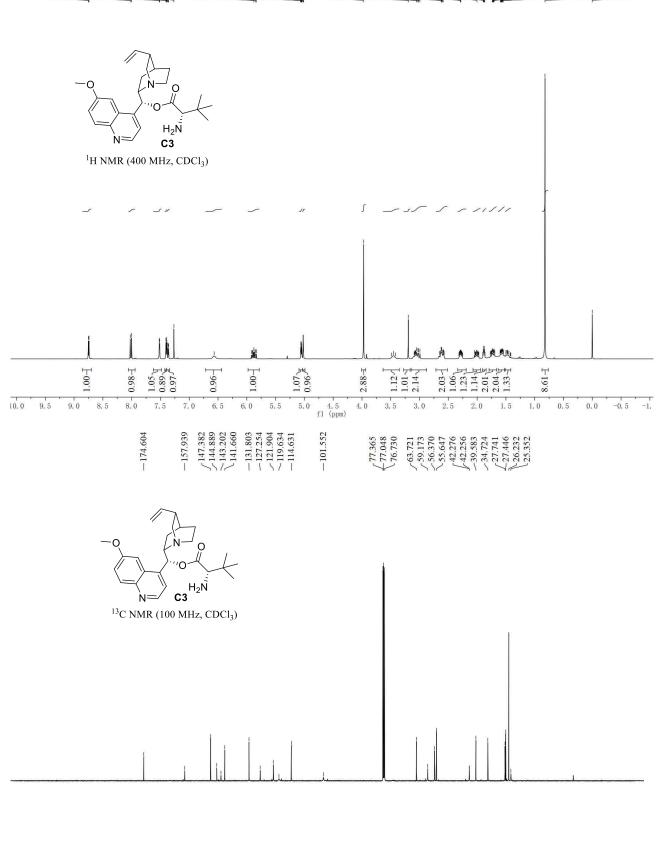


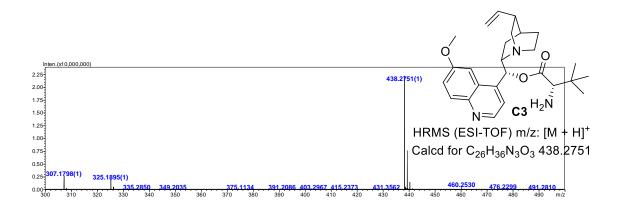


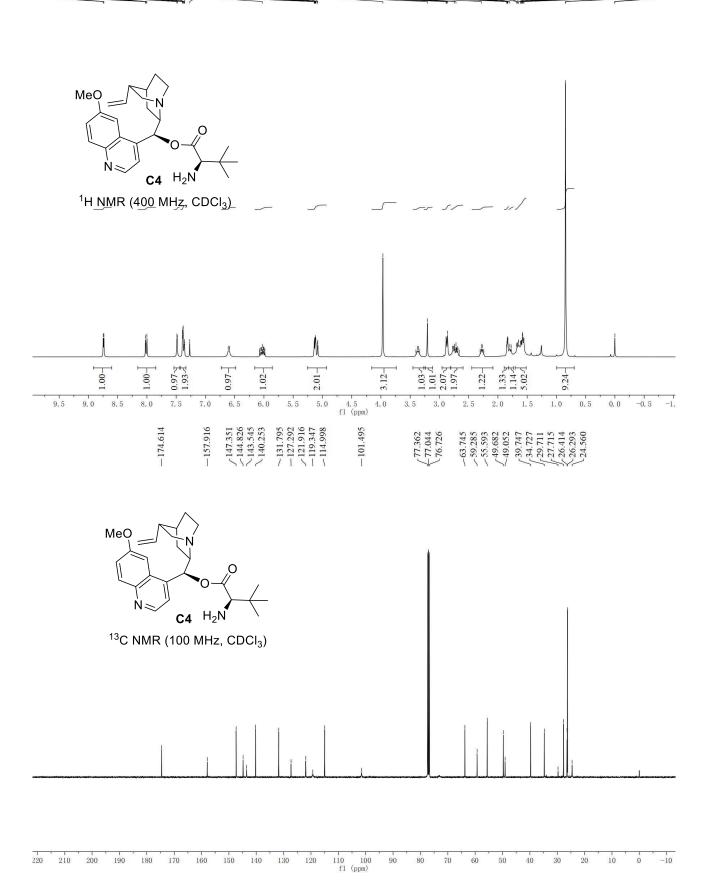

¹³C NMR (100 MHz, D₂O)



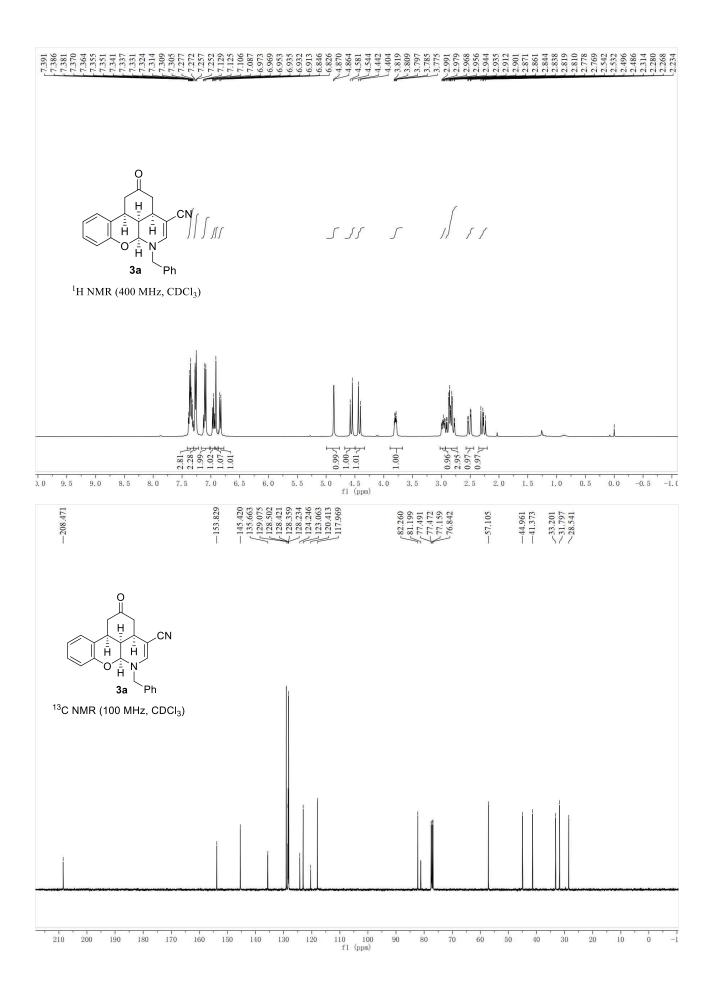


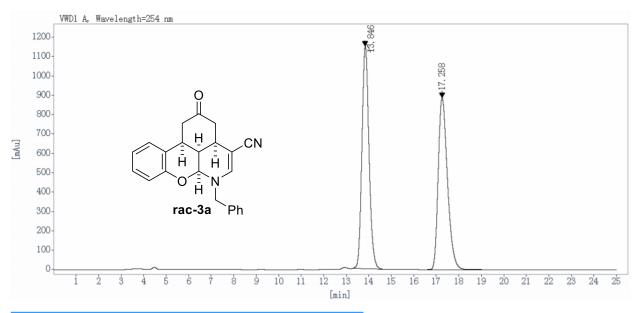


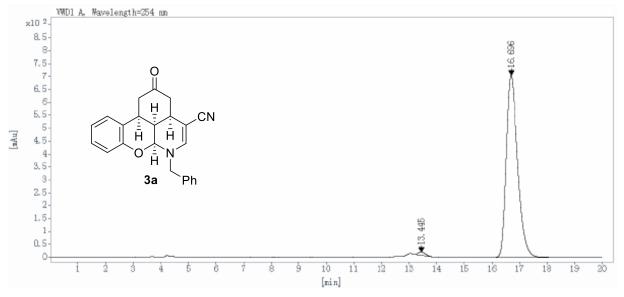


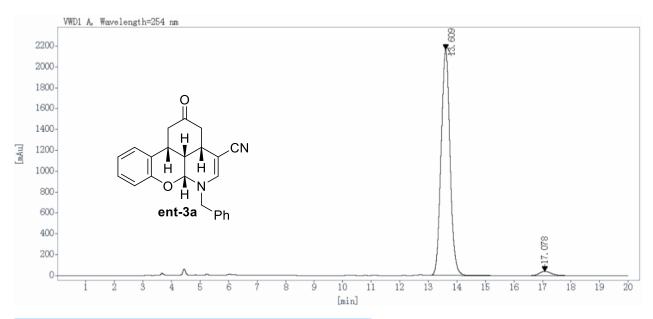

¹³C NMR (100 MHz, D₂O)

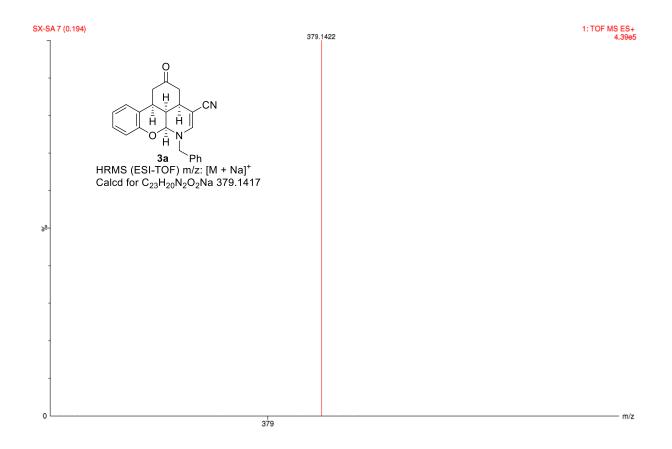


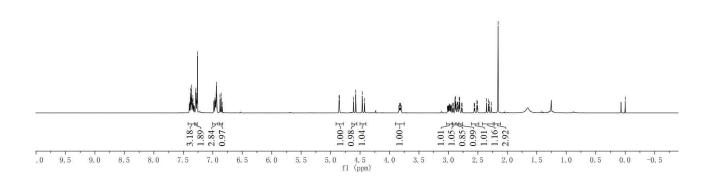



150 140 130 120 110 100 90 f1 (ppm)

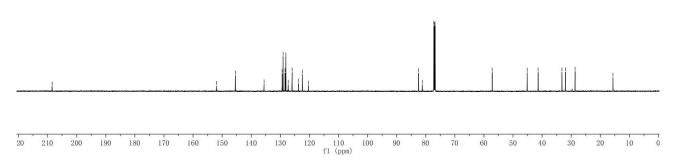


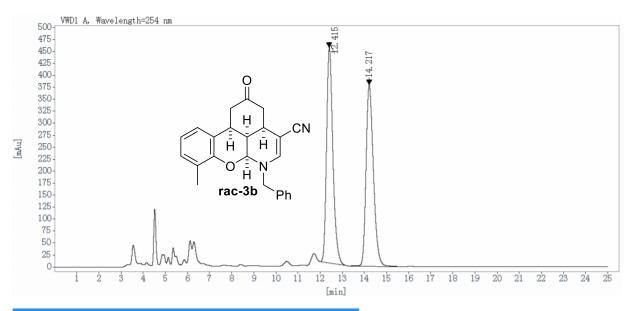



Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.846	BB	0.34	1150.6011	25126.6035	49.8225
17.258	BBA	0.44	887.8301	25305.6152	50.1775
			Totals:	50432.2188	100.0000

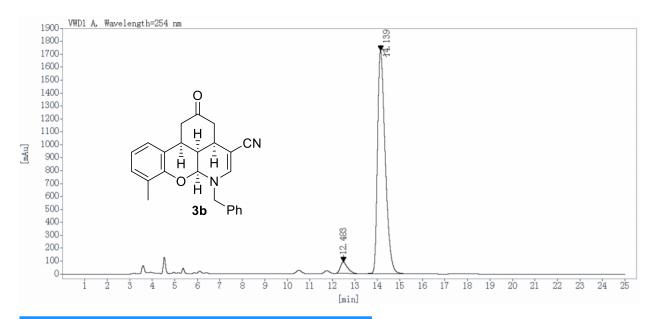

Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
13.445	BB	0.28	12.6366	218.0363	1.0765
16.696	BB	0.44	704.6625	20036.7871	98.9235
			Totals:	20254.8235	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.609	$_{ m BB}$	0.34	2165.4365	46895.2773	97.7418
17.078	$_{ m BB}$	0.43	39.0629	1083.4567	2.2582
			Totals:	47978.7340	100.0000

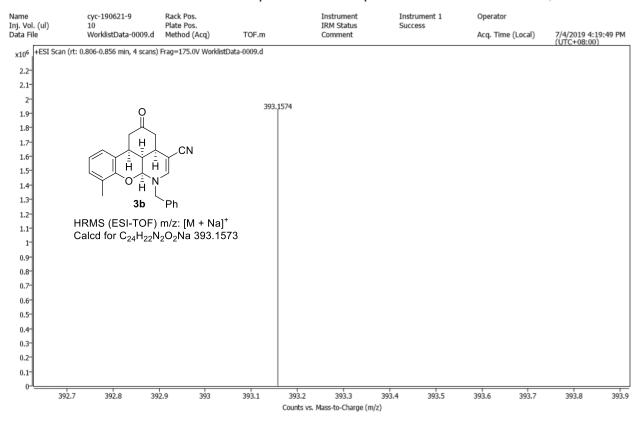

 $^{1}\text{H NMR (400 MHz, CDCl}_{3})$



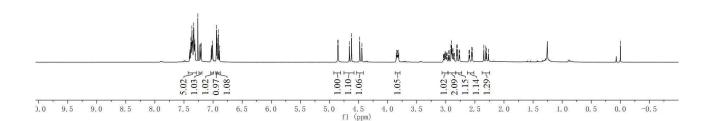
-208.44

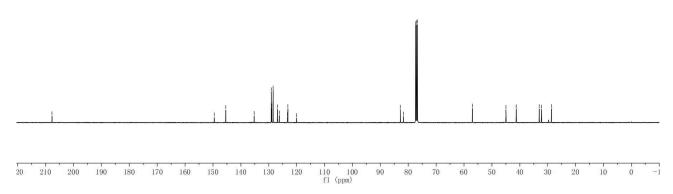

\$2.459 \$1.186 77.215 77.002 -57.169 -45.133 -41.376 ~28.675

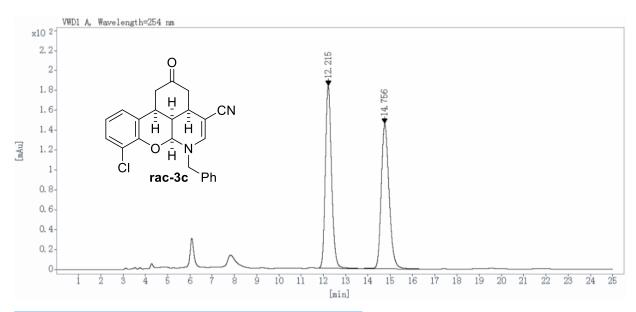
¹³C NMR (150 MHz, CDCl₃)


Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
12.415	BB	0.30	450.3027	8909.9033	50.4488
14.217	VB R	0.36	378.8571	8751.3887	49.5512
			Totals:	17661,2920	100.0000

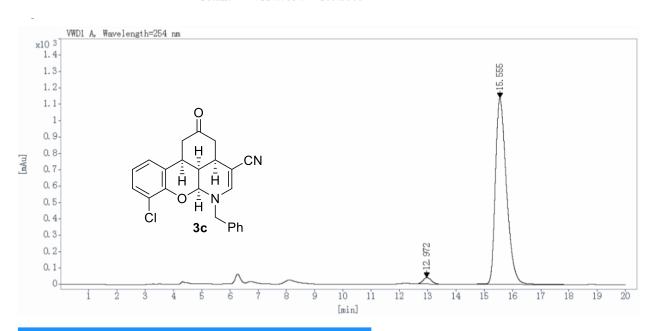
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
12.483	BB	0.33	86.7881	1929.9445	4.4797
14.139	BB	0.37	1727.0555	41152.4570	95.5203
			Totals:	43082.4015	100.0000


Spectrum Plot Report

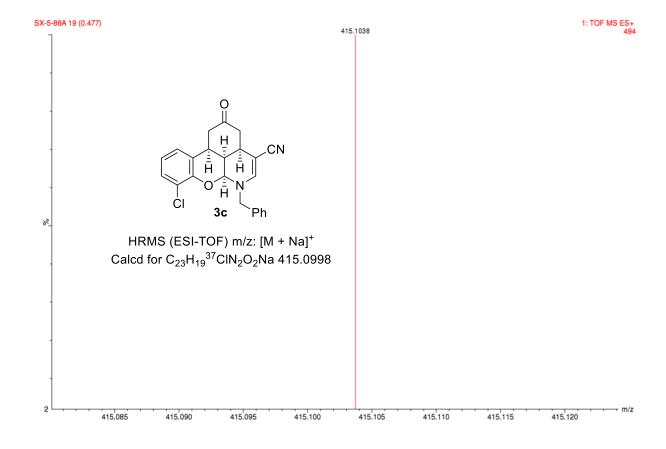


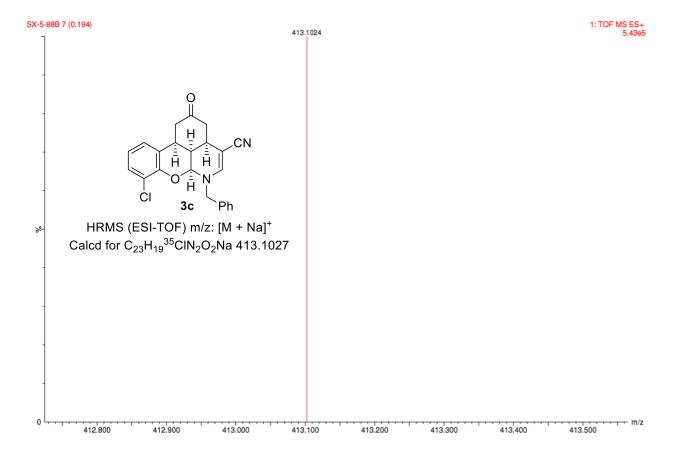

 1 H NMR (400 MHz, CDCl₃)

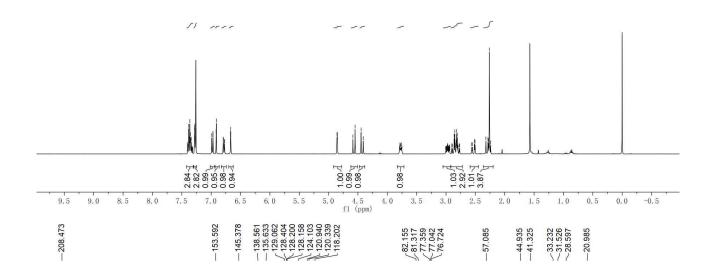
see i see

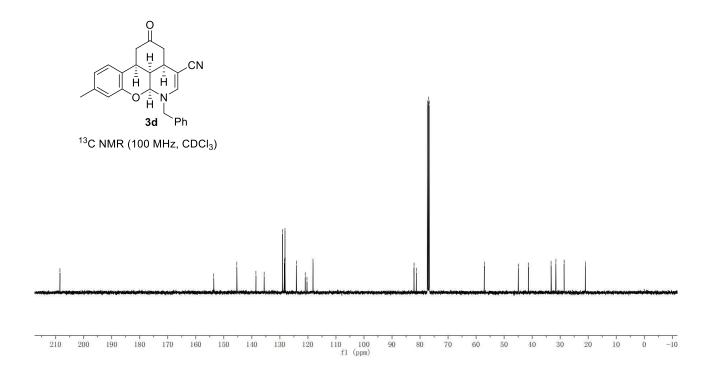


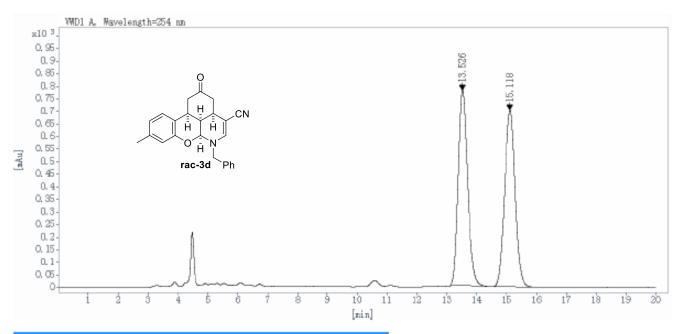
¹³C NMR (100 MHz, CDCl₃)

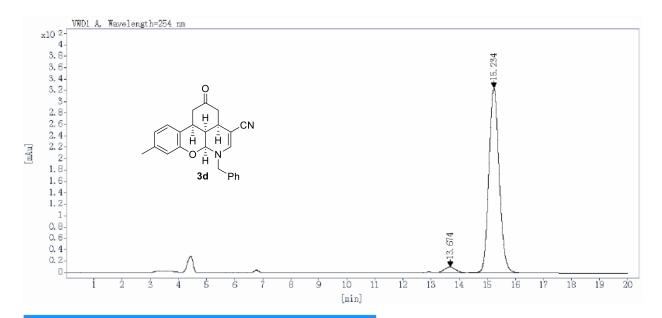


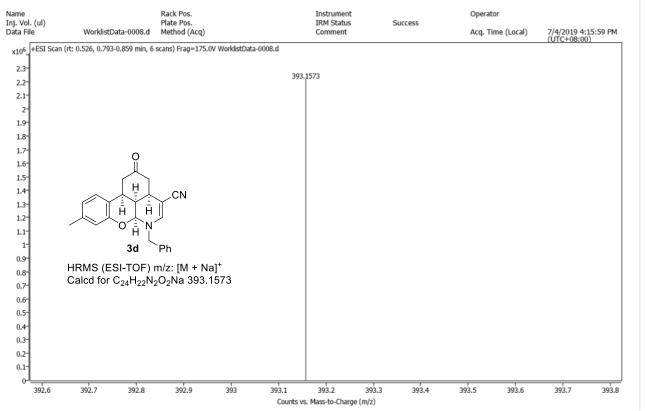


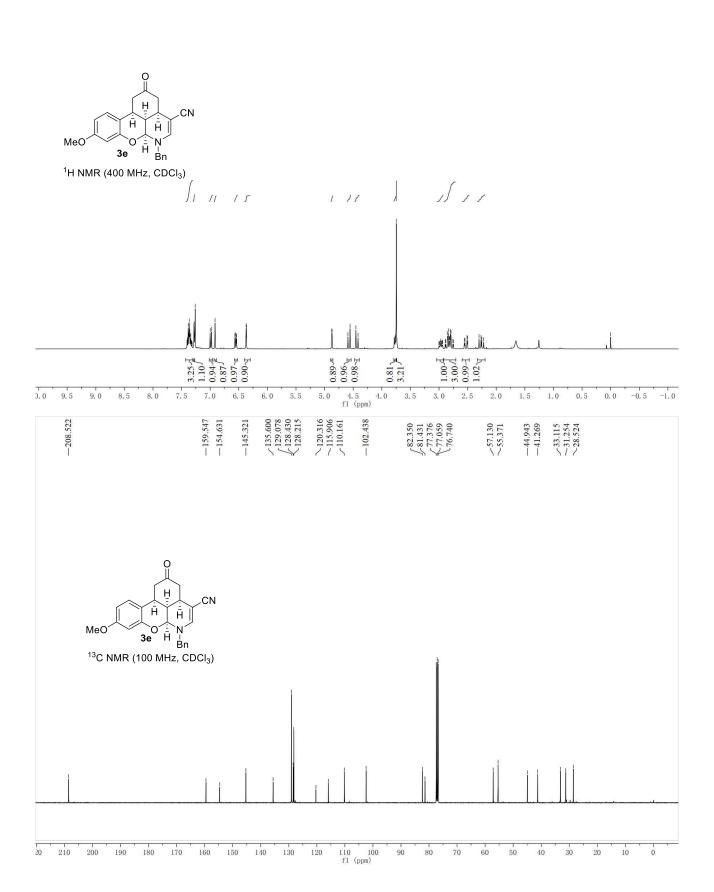

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
12.215	$_{ m BB}$	0.30	183.3132	3544.1355	49.8137
14.756	VB R	0.38	145.7604	3570.6499	50.1863
			Totals:	7114.7854	100.0000

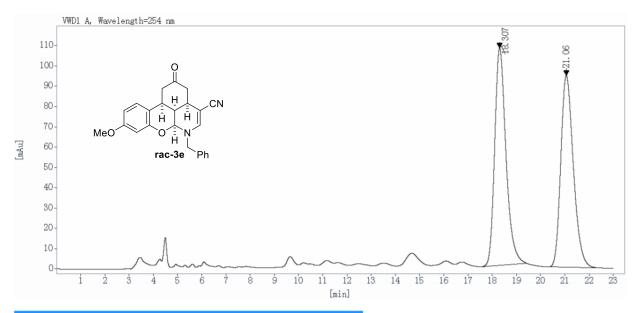



Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
12.972	$_{ m BB}$	0.31	38.7840	776.2845	2.4353
15.555	VB R	0.42	1137.2030	31099.5488	97.5647
			Totals:	31875.8334	100.0000

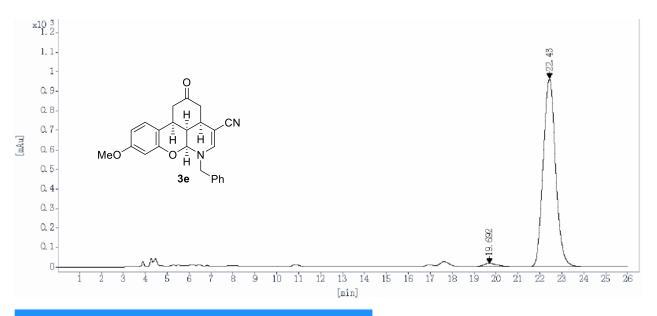


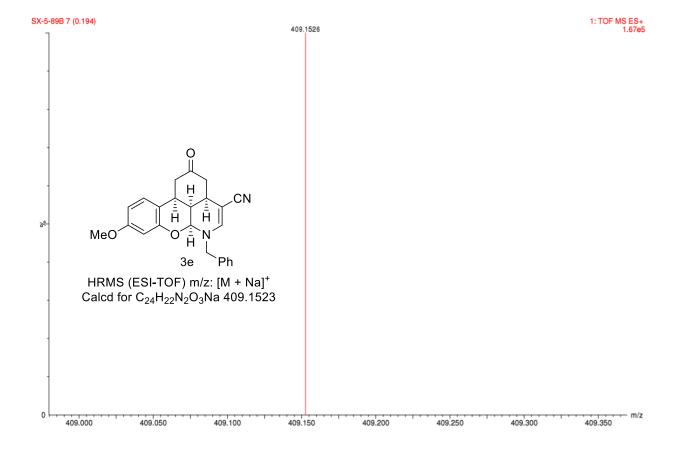


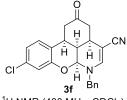

				Area [mAU±s]	
13.526	BB	0.34	776.3278	16920.7051	49.7124
15.118	BB	0.38	703.4384	17116.5176	50.2876
			Totals:	34037.2227	100.0000

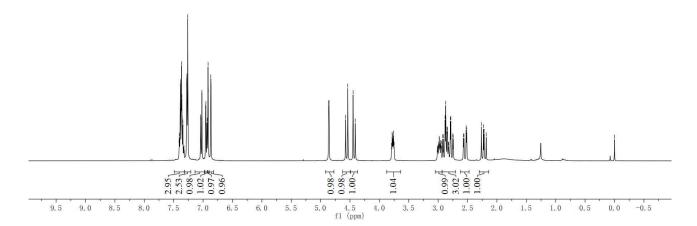


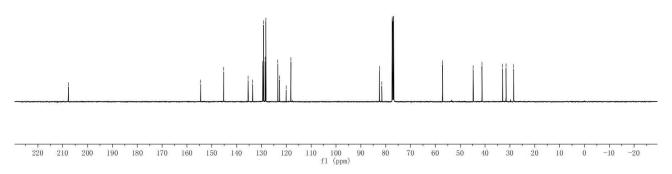
Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
13.674	BB	0.41	10.0731	265.0782	3.0931
15.234	BB	0.40	325.1169	8304.9111	96.9069
			Totals:	8569.9894	100.0000

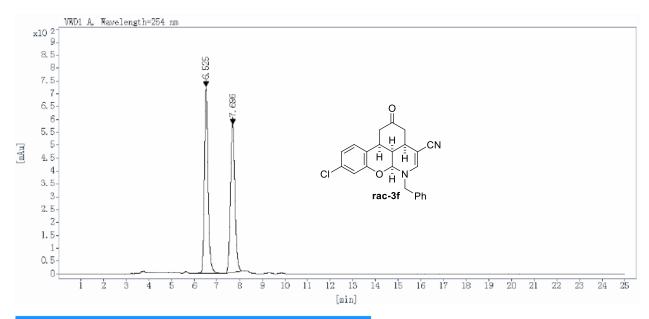


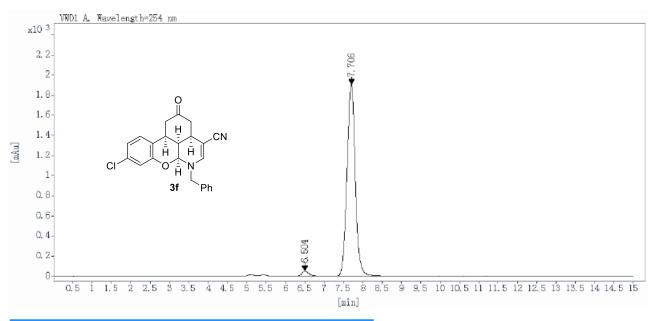


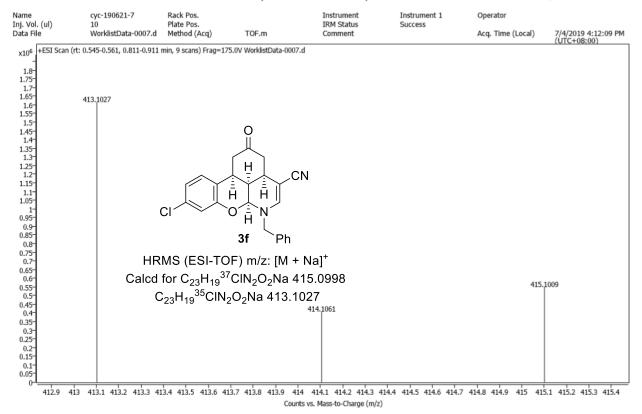


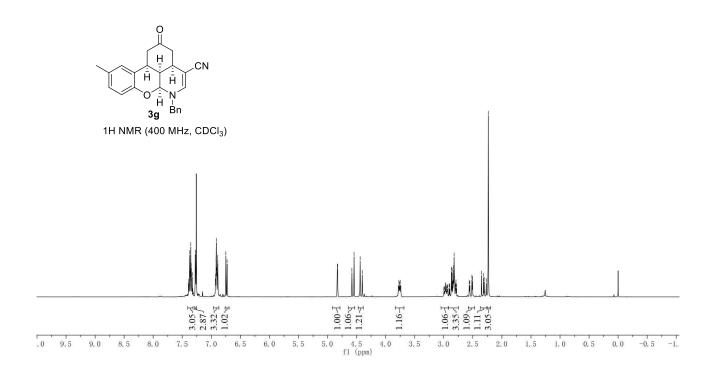

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
18.307	BBA	0.49	107.1228	3475.0276	50.4387
21.060	BBA	0.56	94.4773	3414.5828	49.5613
			Totals:	6889.6104	100.0000

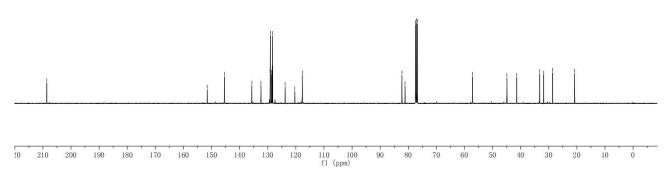


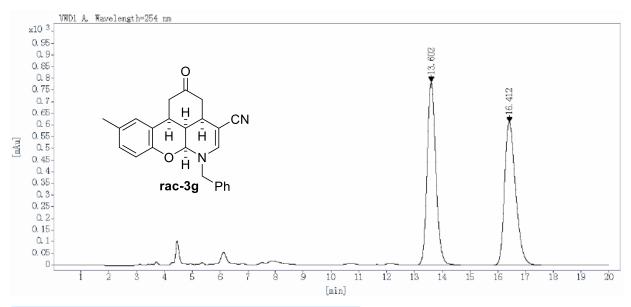

Ret Time	Peak	Width	Height	Area	Area
[min]	Type	[min]	[mAU]	[mAU*s]	[%]
19.692	BB	0.70	16.4002	768.9207	1.9797
22.430	BB	0.62	963.5192	38070.6250	98.0203
			Totals:	38839.5457	100.0000

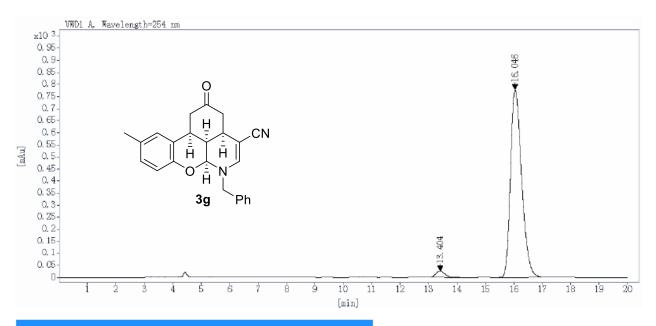




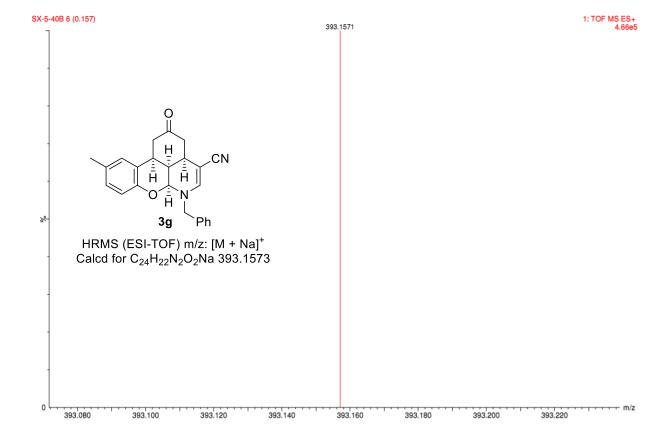

				Area [mAU*s]	Area [%]
6.525	VB R	0.17	723.0023	8226.5508	50.9252
7.696	BBA	0.21	574.9030	7927.6411	49.0748
			Totals:	16154.1919	100.0000

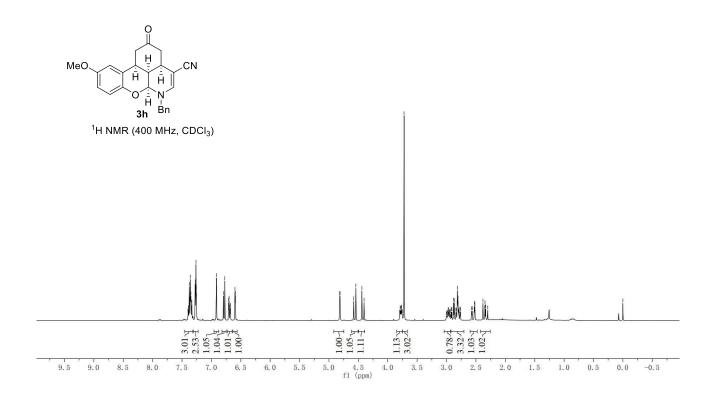

			Height [mAU]	Area [mAU*s]	Area [%]
6.504	BB	0.19	50.4729	636.6685	2.1874
7.706	BBA	0.23	1903.3988	28469.9219	97.8126
			Totals:	29106.5904	100.0000



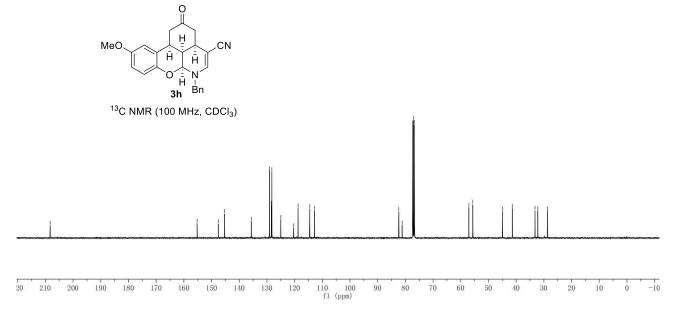


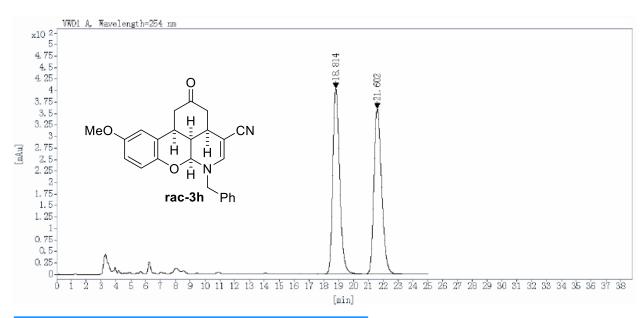
 13 C NMR (100 MHz, CDCl₃)

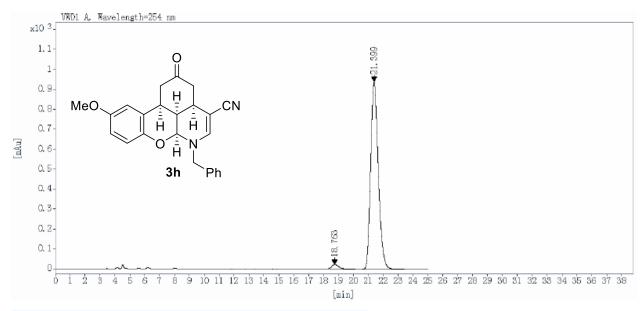




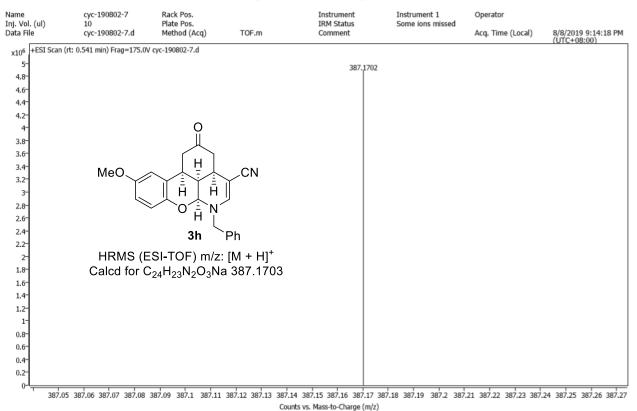
Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
13.602	BB	0.34	784.7740	17090.1875	50.2161
16.412	BB	0.43	613.5533	16943.0645	49.7839
			Totals:	34033.2520	100.0000

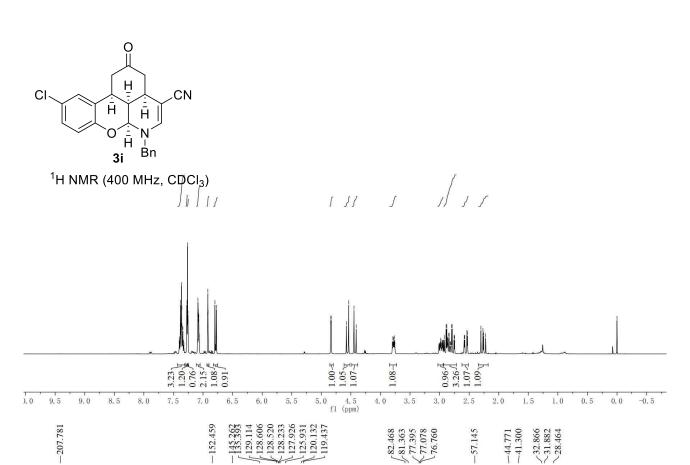


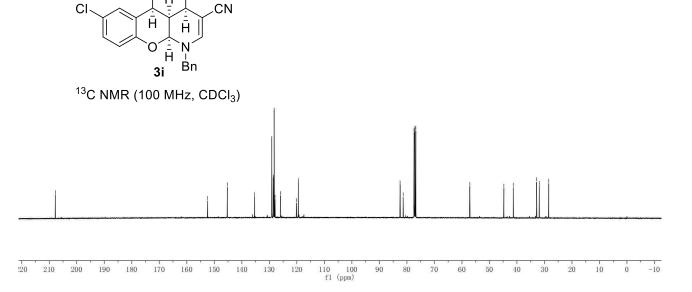

Ret Time	Peak	Width	Height	Area	Area
[min]	Type	[min]	[mAU]	[mAU*s]	[%]
13.404	BB	0.33	27.0000	577.4831	2.6465
16.046	BB	0.42	778.8320	21243.3047	97.3535
			Totals:	21820.7878	100.0000

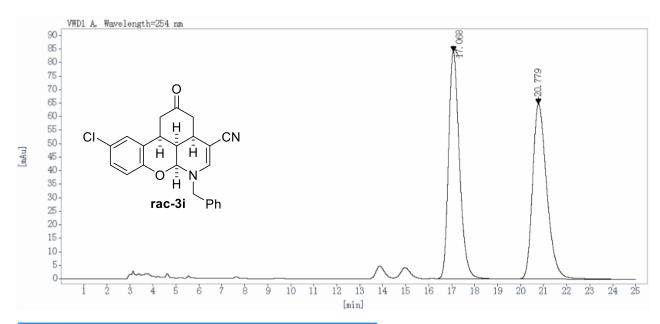


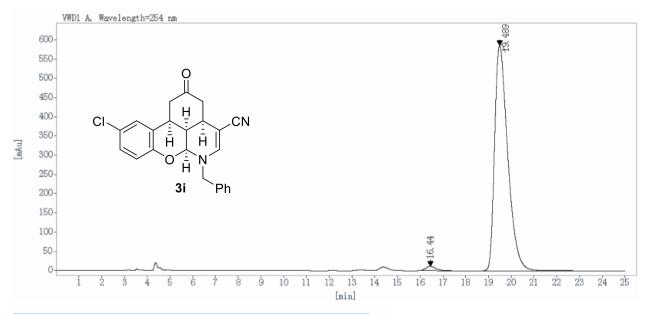
-208.281 -155.198 -155.198 -147.574 -129.052 -129.052 -124.973 -118.754 -112.826 -124.973 -111.8754 -112.824 -112.839 -112.824 -112.824 -112.824 -112.824 -112.824 -112.824 -112.824 -12.8239 -12.8239 -12.8239 -12.8239 -12.8239 -13.84 -13.84 -13.84 -14.937 -41.390 -41.390 -41.390 -35.678

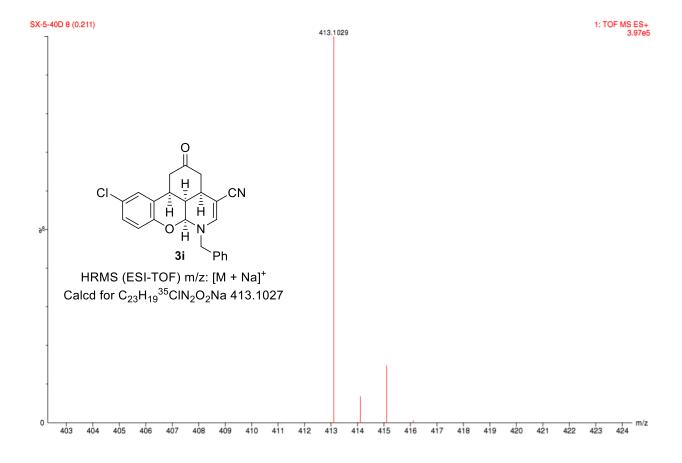


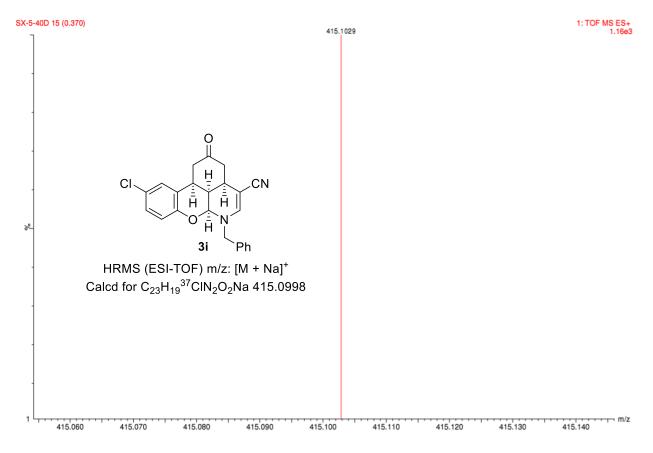

Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
18.814	BB	0.49	404.1403	12929.3496	49.8863
21.602	BB	0.56	360.8577	12988.3008	50.1137
			Totals:	25917.6504	100.0000

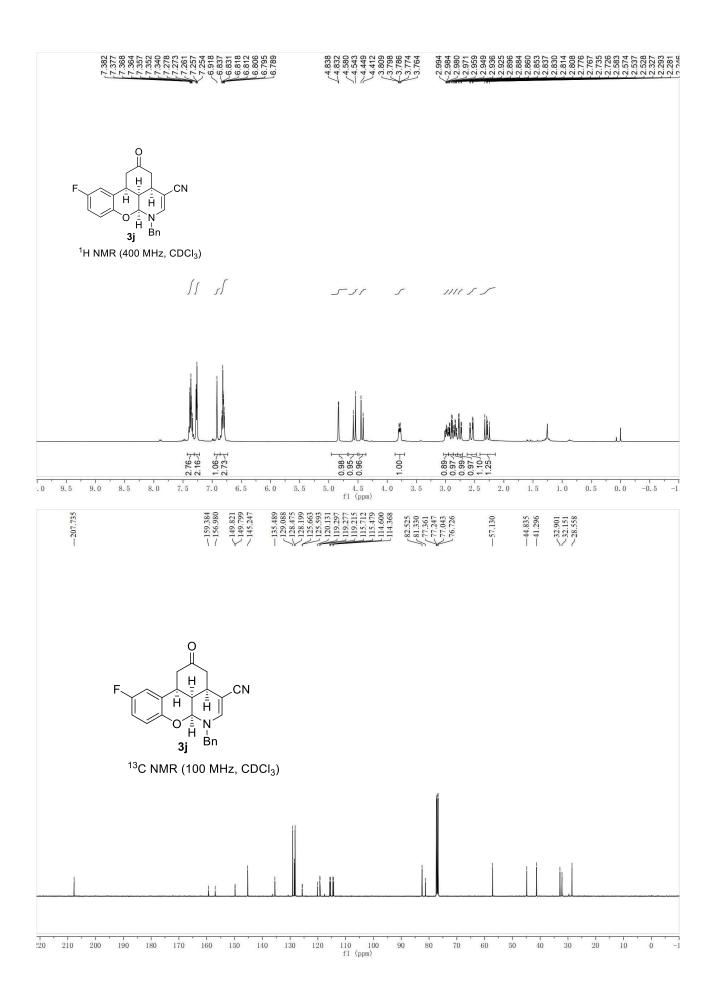


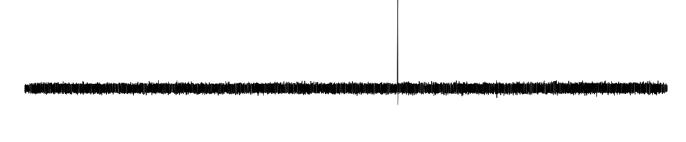

Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
18.763	BB	0.52	22.0322	747.7730	2.1922
21.399	BBA	0.55	937.9530	33362.3555	97.8078
			Totals:	34110.1285	100.0000

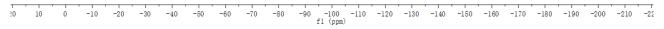


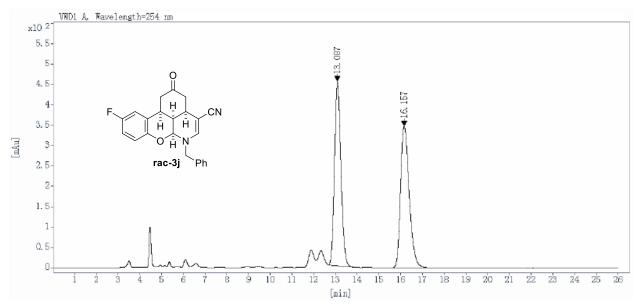


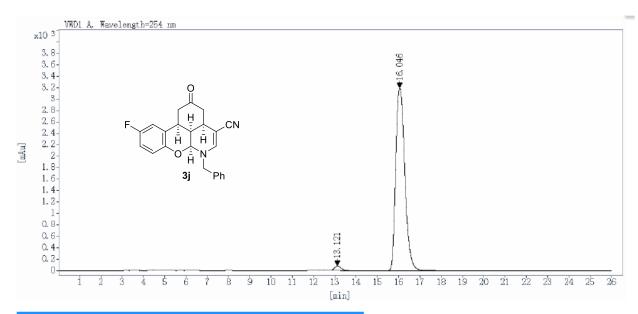


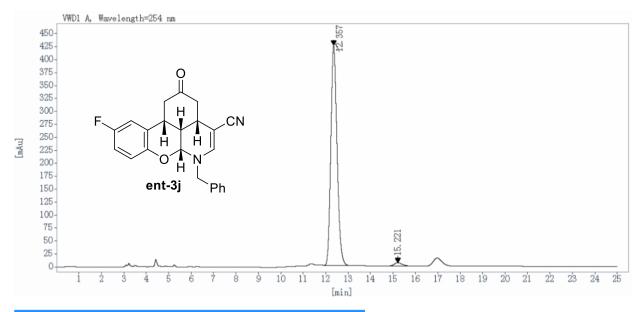

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
17.068	BB	0.50	84.0735	2760.4548	49.8701
20.779	BB	0.66	64.7009	2774.8335	50.1299
			Totals:	5535.2883	100.0000

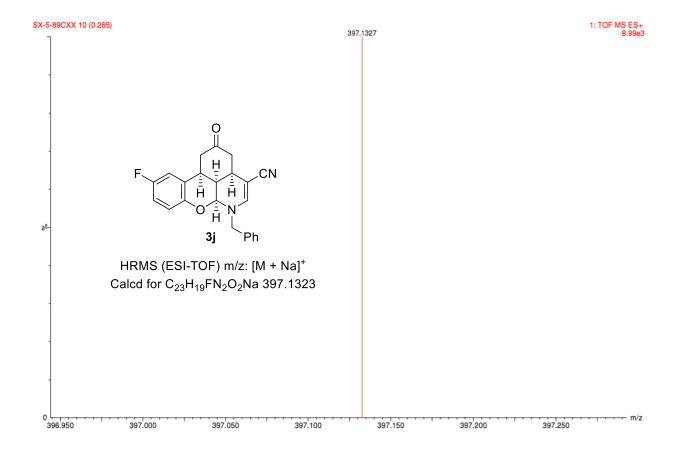


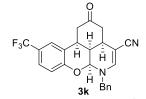

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.440	BB	0.48	10.9458	338.9474	1.4231
19.489	BB	0.61	586.0291	23478.2793	98.5769
			Totals:	23817 2267	100 0000



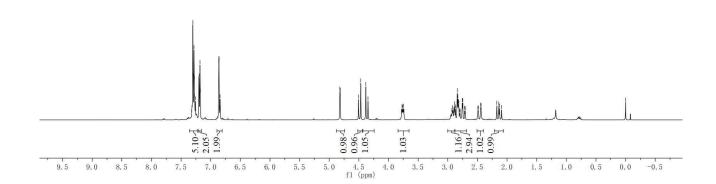




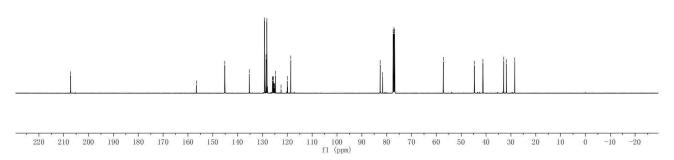

Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
13.087	BB	0.32	452.6000	9321.4033	49.2768
16.157	BB	0.43	348.3522	9594.9990	50.7232
			Totals:	18916.4023	100.0000

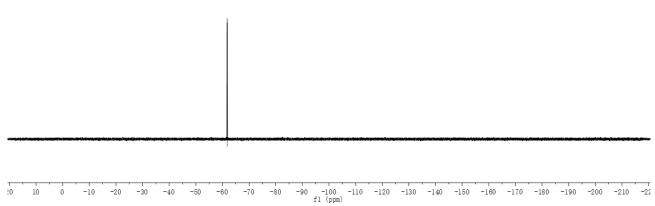


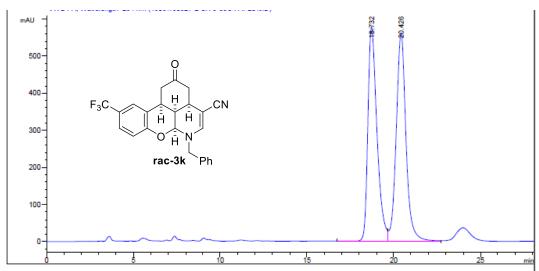
Ret Time [min]			Height [mAU]		Area [%]
13.121	BB	0.32	78.2868	1613.3698	1.6690
16.046	BB	0.47	3198.9976	95052.9766	98.3310
			Totals:	96666.3463	100.0000

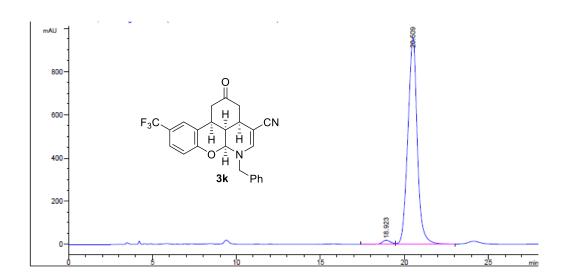


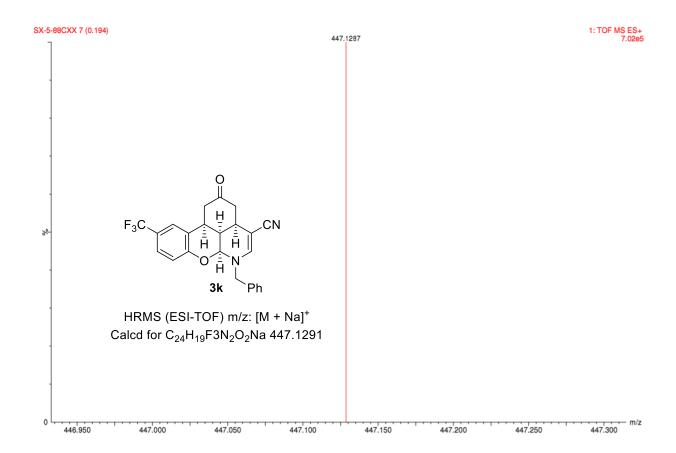
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
12.357	$_{ m BB}$	0.30	424.6237	8203.9131	98.1411
15.221	BB	0.39	6.1543	155.3885	1.8589
			Totals:	8359.3016	100.0000

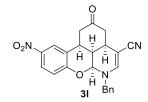




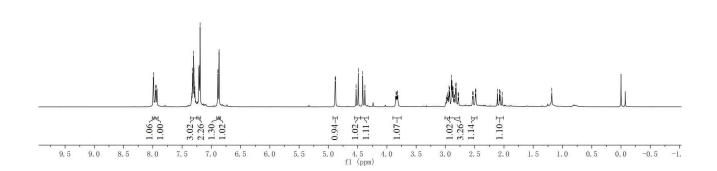

5 15 5 1 1 1


 13 C NMR (100 MHz, CDCl₃)

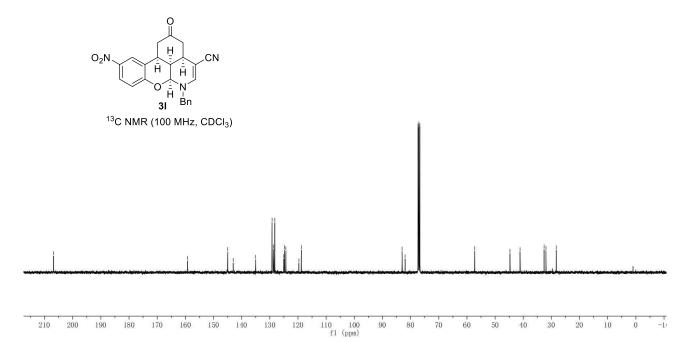


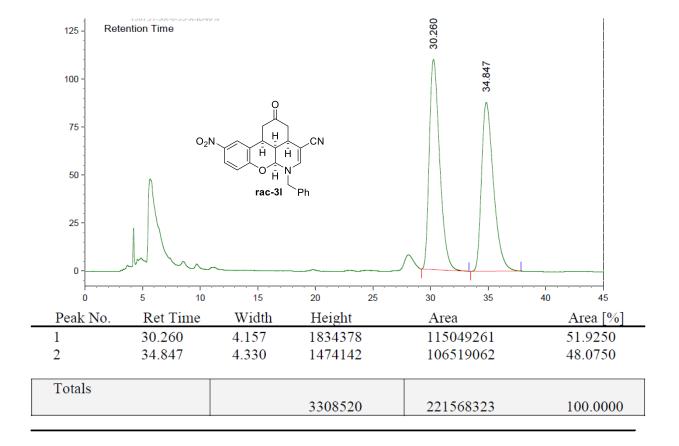


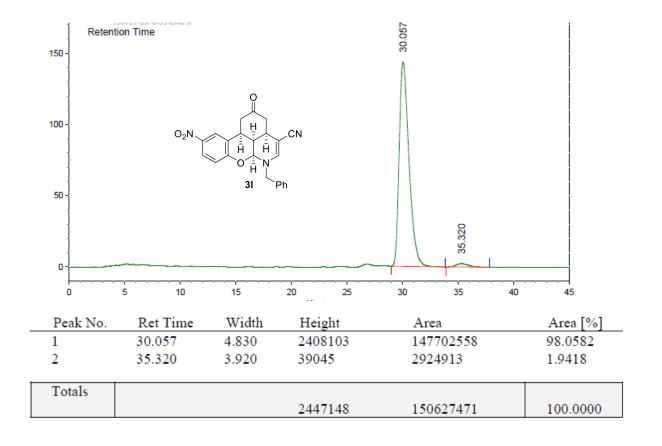
			Width [min]				•	
1	18.732	BV	0.5532	2.096	81e4	575.	47424	48.9622
2	20.426	VV	0.5946	2.185	70e4	560.	65485	51.0378
Total	s:			4.282	51e4	1136.	12909	

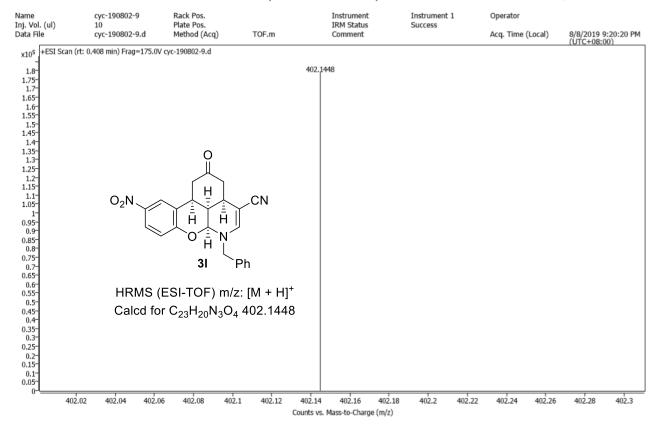


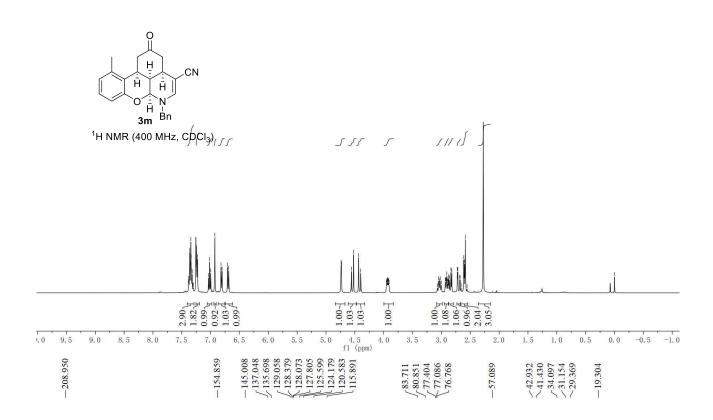
Peak	RetTime	Type	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	* 5	[mAU	1	8
1	18.923	BV	0.5338	648	.00433	18.	63547	1.7089
2	20.509	VBA	0.5938	3.72	713e4	957.	73682	98.2911
Total	ls :			3.79	193e4	976.	37229	

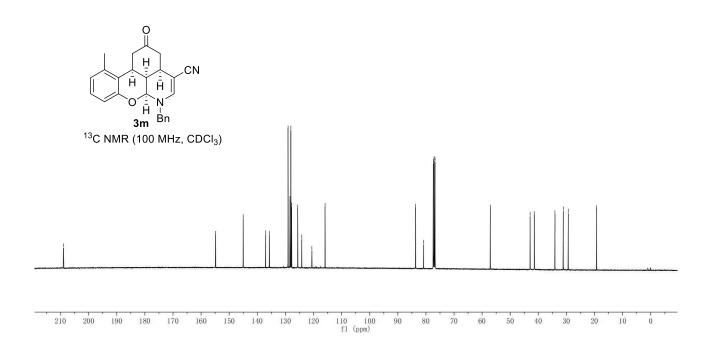


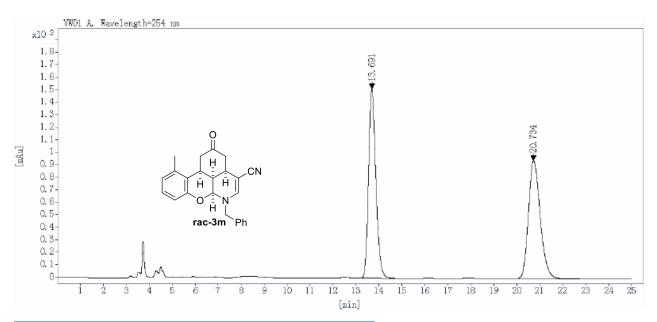


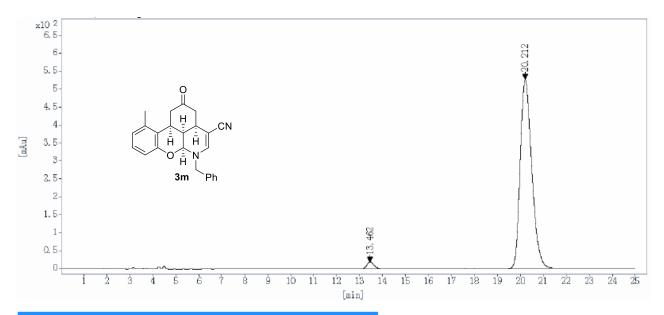

u SI x see e de e

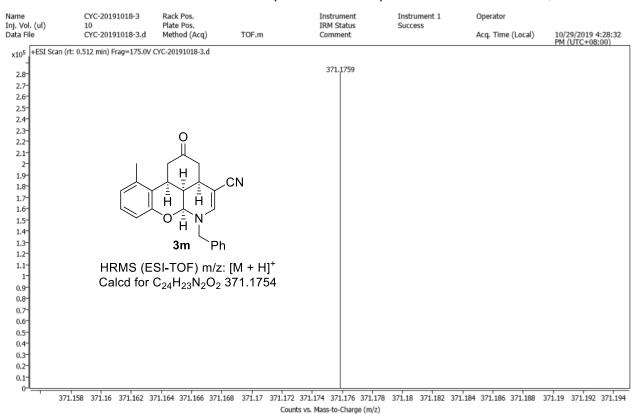

206.753 -159.245 -144.983 -144.983 -144.083 -128.201 -128.688 -128.201 -128.201 -128.305 -124.321 -118.831 -118.831 -118.831 -118.831 -118.831 -118.831 -13.266 -13.266 -14.729 -44.729 -41.134 -22.591 -23.2591 -23.2591

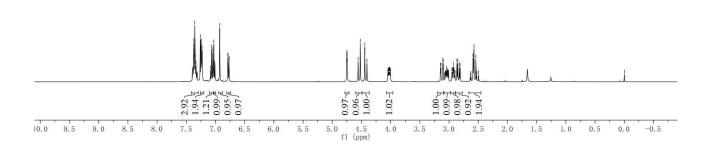






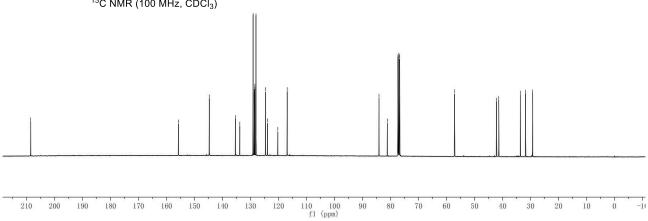


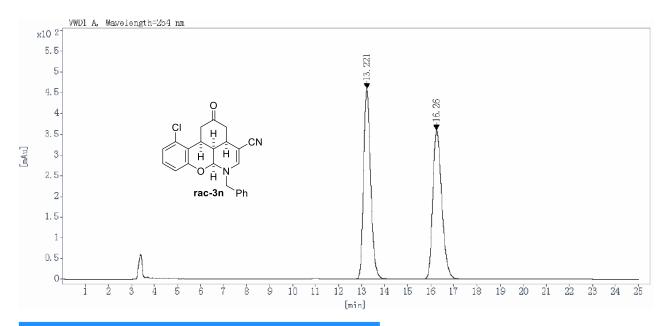

			Height [mAU]	Area [mAU*s]	Area [%]
13.691	BB	0.34	151.4473	3353.0852	49.9201
20.734	BV R	0.55	94.5907	3363.8176	50.0799
			Totals:	6716 9028	100 0000

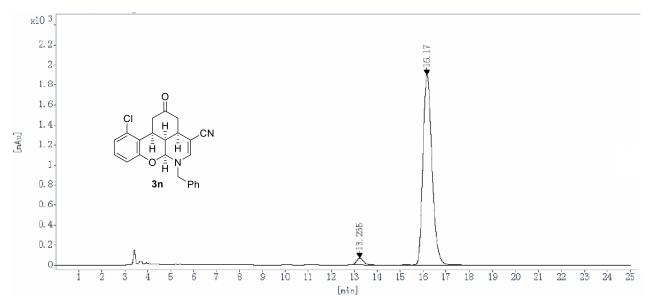


Ret Time [min]				Area [mAU*s]	Area [%]
13.462	BB	0.33	19.8191	428.8155	2.2781
20.212	BB	0.54	527.1540	18394.4941	97.7219
			Totals:	18823.3097	100.0000

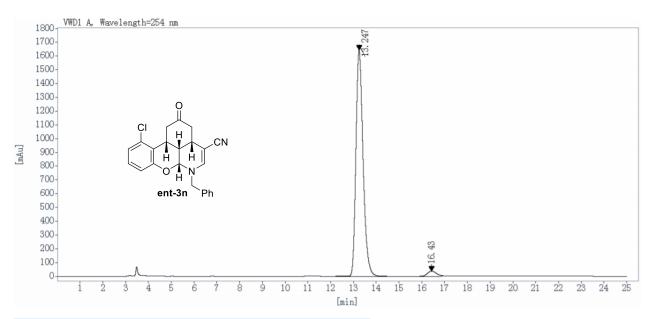
User Spectrum Plot Report

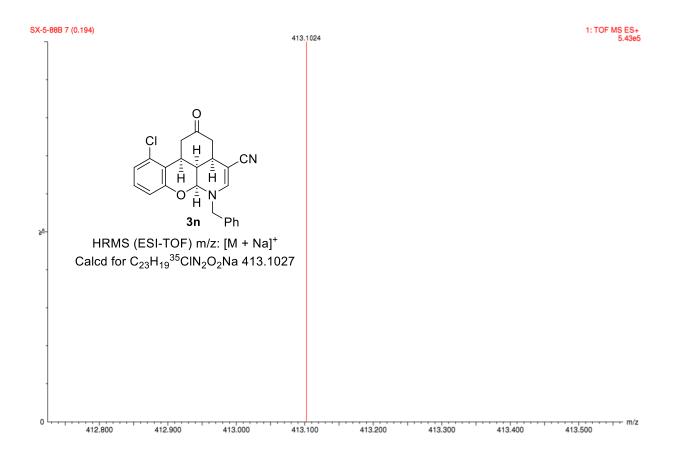


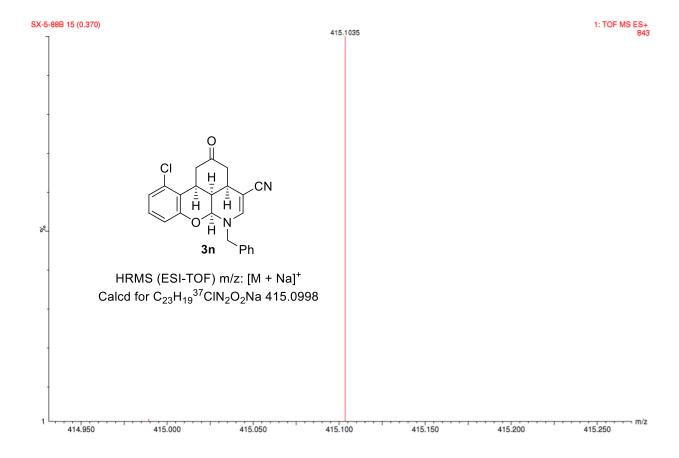


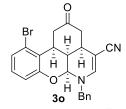

135.436 135.436 133.896 129.117 128.710 128.506 128.506 128.506 123.994 -208.581

¹³C NMR (100 MHz, CDCl₃)



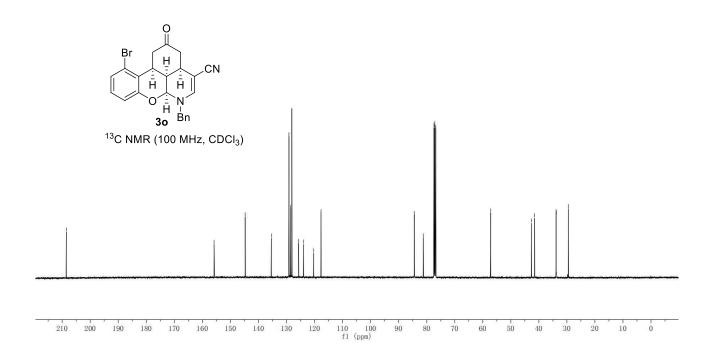

Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
13.221	BB	0.33	459.0653	9798.3350	50.0219
16.260	BB	0.42	360.3121	9789.7383	49.9781
			Totals:	19588.0732	100.0000

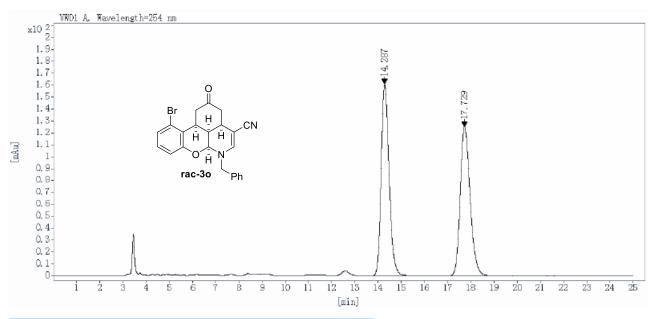



Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.235	BB	0.32	69.2328	1447.6760	2.7013
16.170	VB R	0.43	1898.3207	52144.4375	97.2987
			Totals:	53592.1135	100.0000

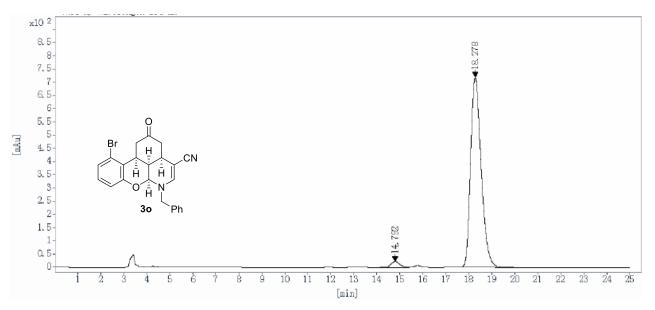
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.247	VB R	0.34	1643.4685	35836.3047	97.1208
16.430	BB	0.44	37.2393	1062.4050	2.8792
			Totals:	36898.7097	100.0000

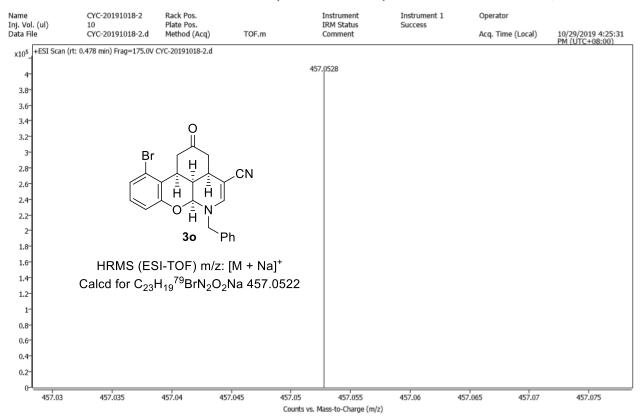




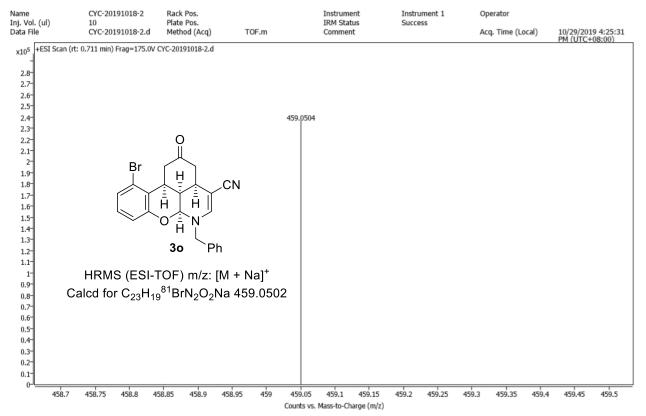


¹H NMR (400 MHz, CDGI₃)

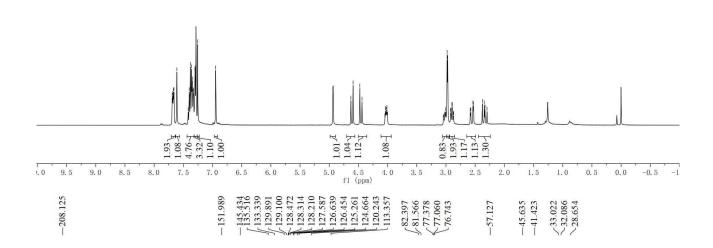

. 11 5 1111 5

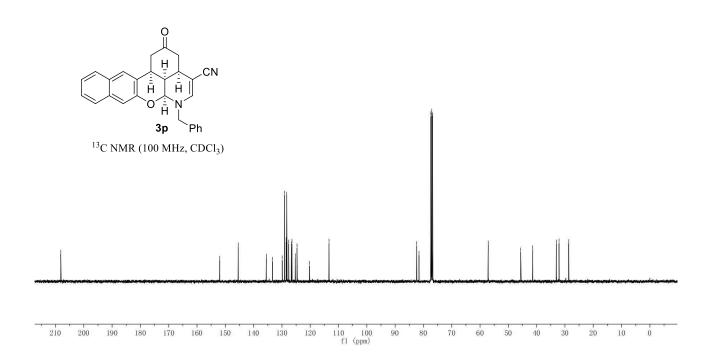


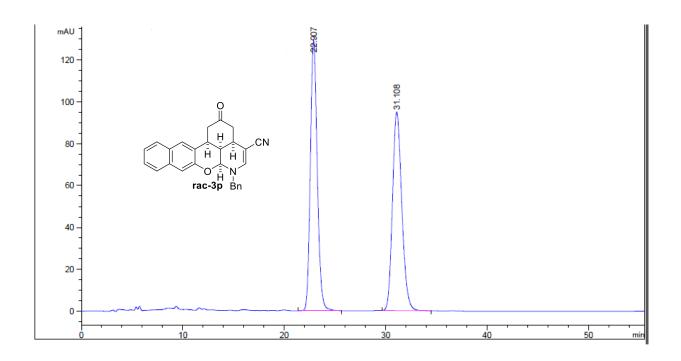
Ret Time [min]			Height [mAU]		Area [%]
14.287	BB	0.36	160.5541	3763.5249	50.5706
17.729	BB	0.45	124.9826	3678.5913	49.4294
			Totals:	7442.1162	100.0000

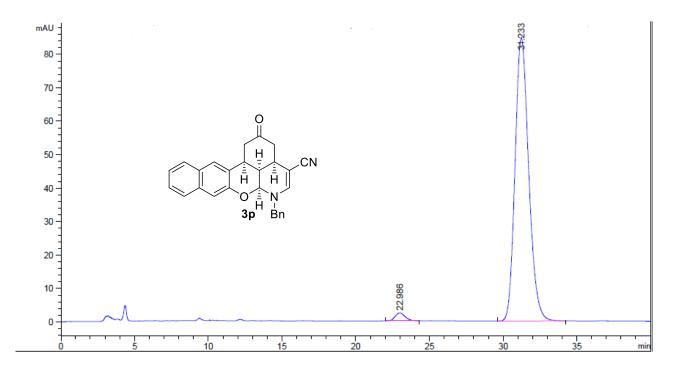


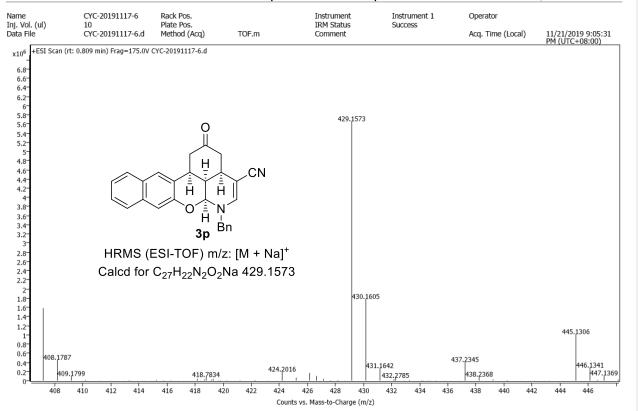

Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
14.792	BV	0.39	22.3030	573.7465	2.4486
18.278	BB	0.49	718.3325	22858.2480	97.5514
			Totals:	23431.9946	100.0000



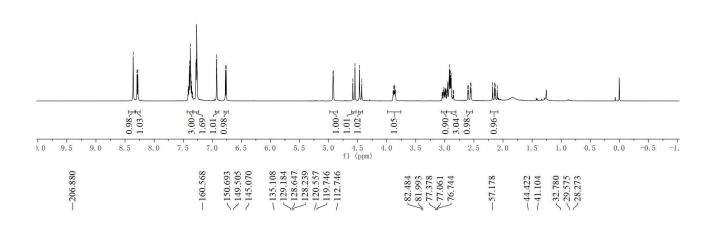


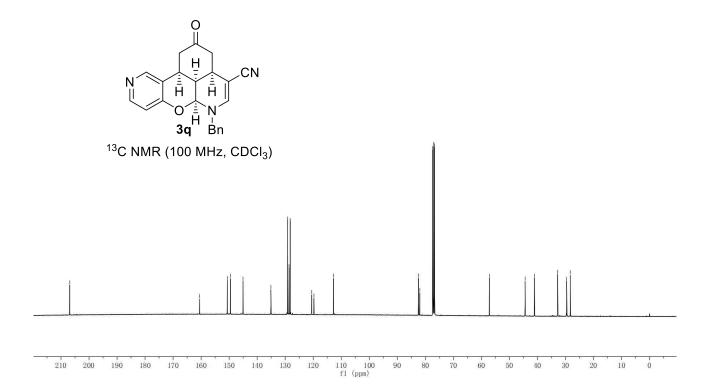


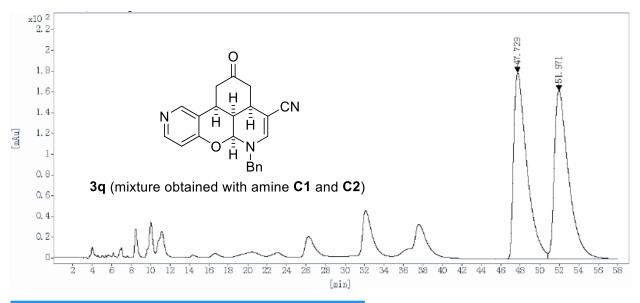

¹H NMR (400 MHz, CDCl₃)



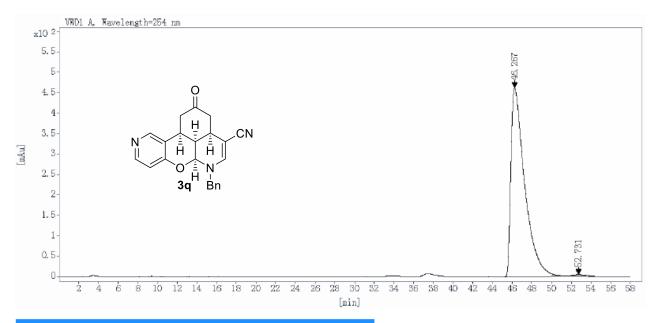
Ret Time	Peak	Width	Height	Area	Area
[min]	Type	[min]	[mAU]	[mAU*s]	[%]
1 22.907	BB 0	.7300 61	14.67139	129.15787	50.2203
2 31 108	RR a	0853 60	61 03125	94 72869	40 770

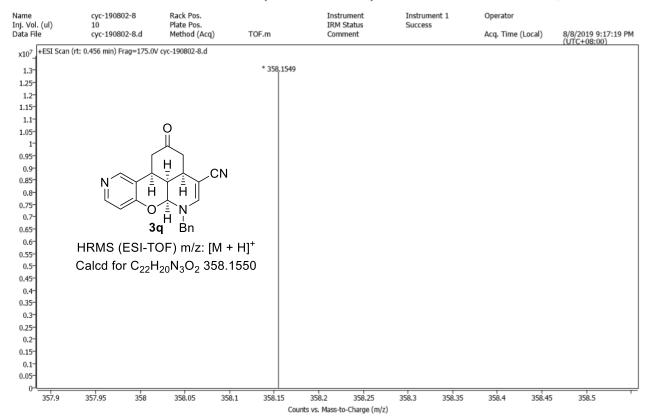

				Height [mAU]	Area [mAU*s]	Area [%]
1		11-				
1	22.986	BB	0.6740	111.72887	2.38177	2.0079
2	31.233	BB	0.9953	5452.76123	84.74212	97.9921

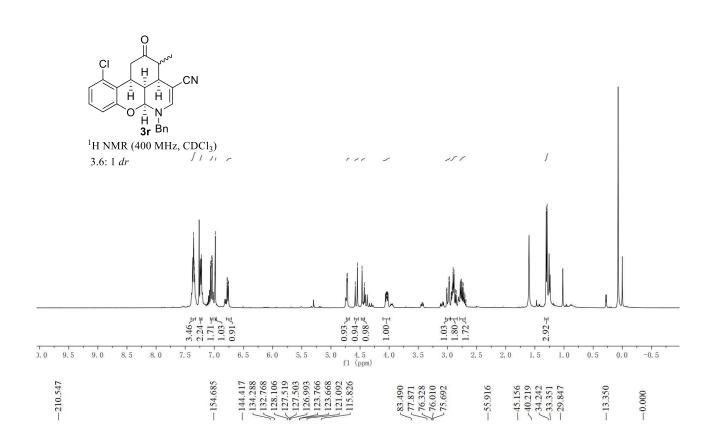


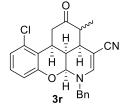


¹H NMR (400 MHz, CDCl₃)

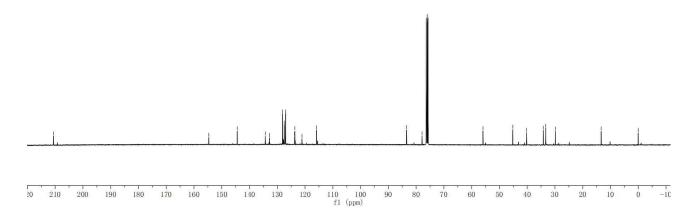

ss 15 51 5 11 5 12 1

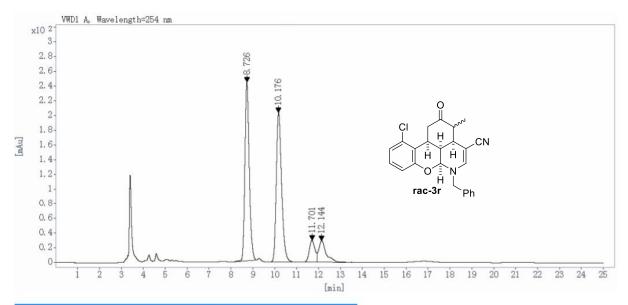

				Area [mAU*s]	Area [%]
47.729	BV	1.39	179.6290	16912.1152	50.6923
51.971	VBA	1.50	162.2717	16450.1504	49.3077
			Totals:	33362.2656	100.0000

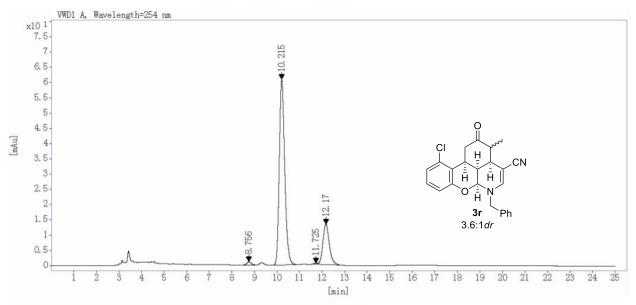



Ret Time [min]					Area [%]
46.267	BB	1.42	462.3224	44950.5156	99.1160
52.731	BB	1.12	4.3110	400.9201	0.8840
			Totals:	45351.4357	100.0000

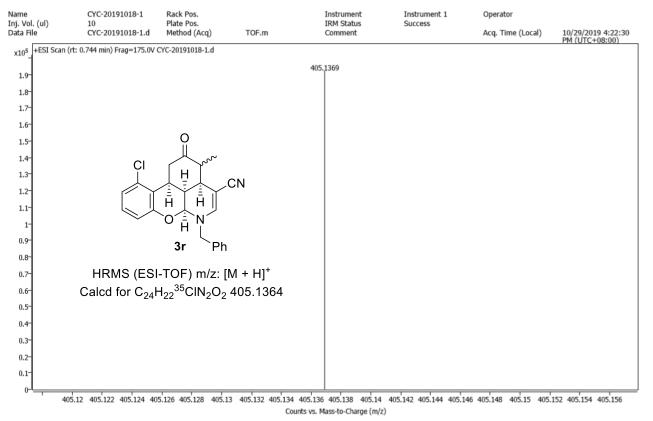
Spectrum Plot Report



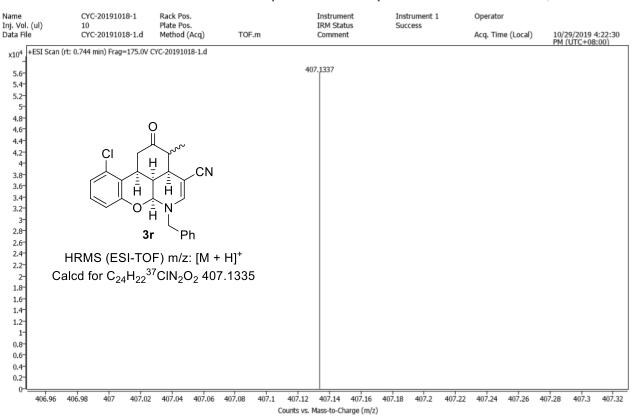


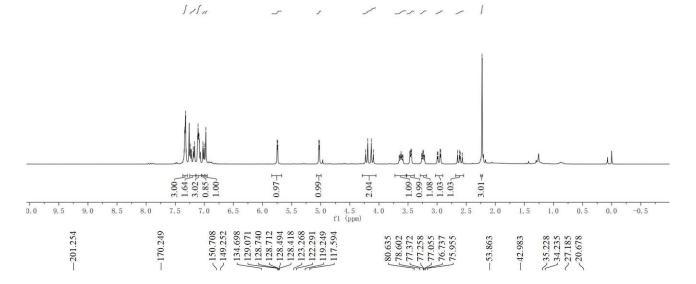


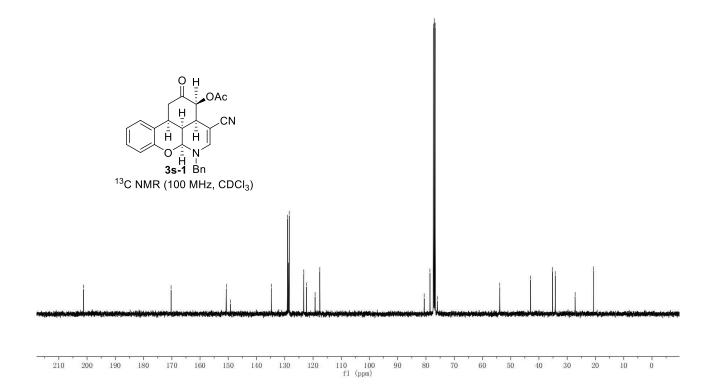
¹³C NMR (100 MHz, CDCl₃) 3.6:1*dr*

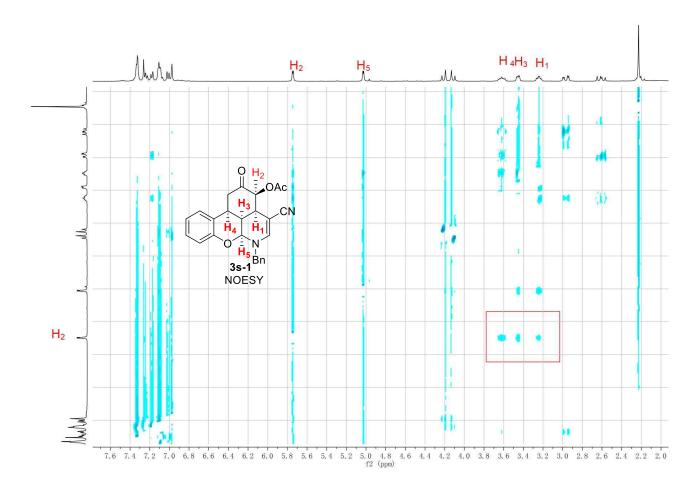


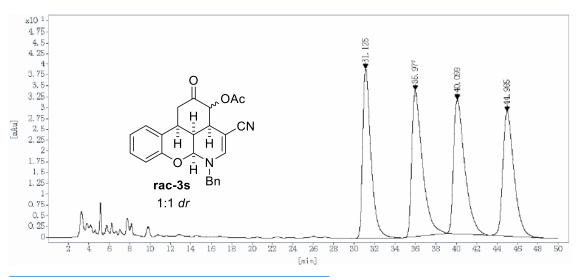
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.726	BB	0.21	242.6295	3353.0234	42.0242
10.176	BB	0.26	203.2005	3415.0430	42.8015
11.701	VV R	0.28	29.2551	525.4814	6.5860
12.144	VB	0.34	29.0846	685.2460	8.5883
			Totals:	7978.7938	100.0000

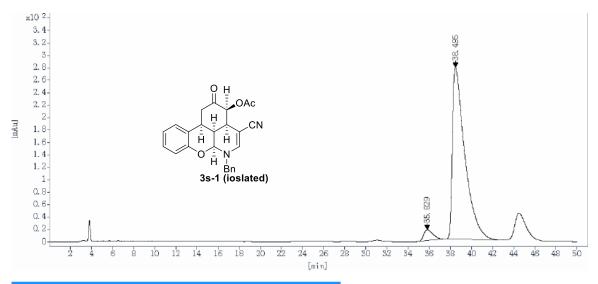


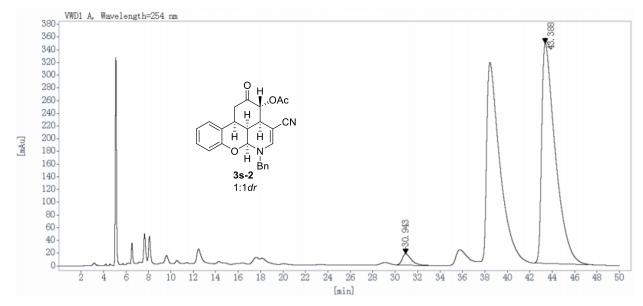

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.756	BBA	0.21	1.0490	14.3321	1.1065
10.215	BB	0.26	60.7742	1013.0850	78.2131
11.725	BVE	0.18	0.3161	3.6149	0.2791
12.170	VBAR	0.30	13.3115	264.2566	20.4014
			Totals:	1295,2886	100.0000



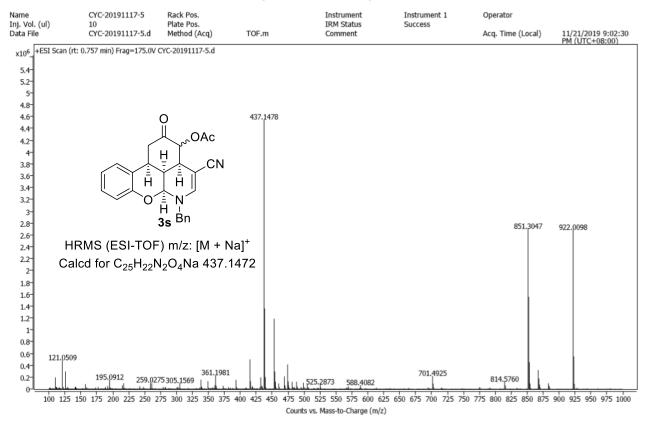


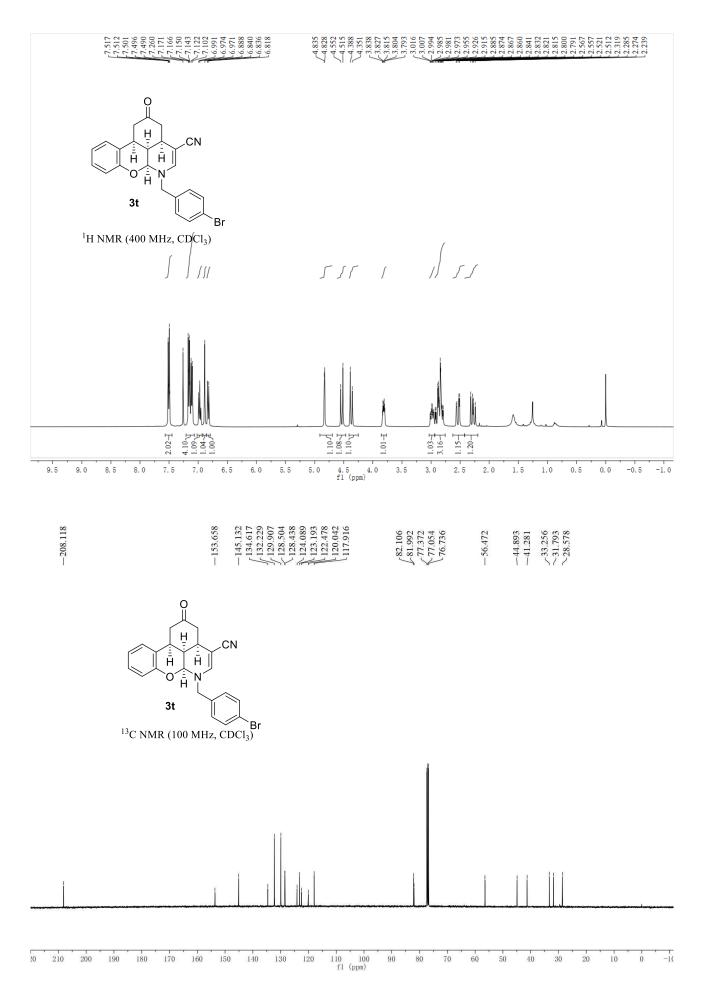


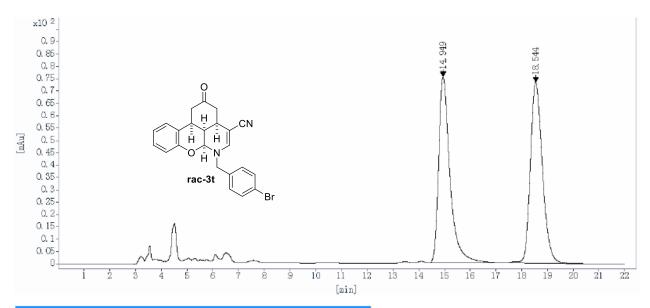




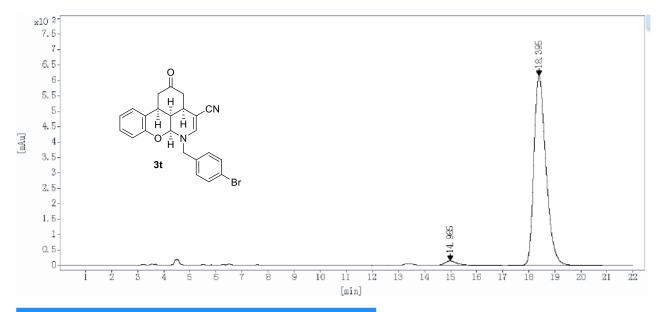
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
31.125	BB	0.85	39.0780	2208.8010	23.9454
35.977	BB	1.06	33.7108	2452.5779	26.5881
40.099	BB	1.13	31.0673	2377.3142	25.7722
44.985	BB	1.14	28.8901	2185.6467	23.6943
			Totals:	9224.3398	100.0000

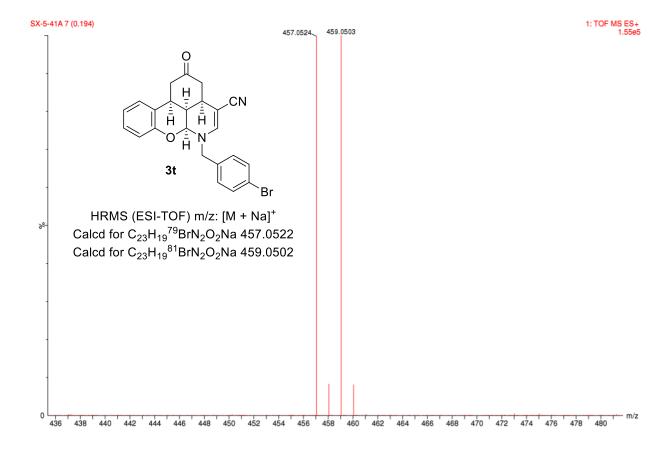

Ret Time [min]				Area [mAU*s]	Area [%]
35.829	BB	0.94	17.5585	1078.0302	4.5592
38.495	BB	1.18	276.1418	22567.2324	95.4408
			Totals:	23645.2626	100.0000



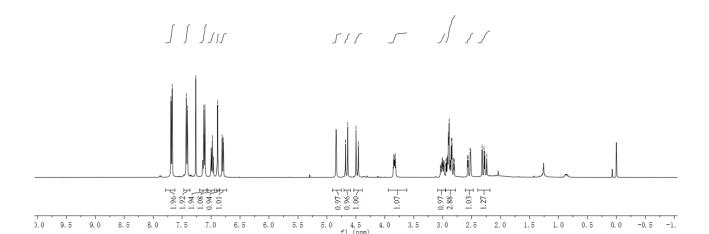

Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
30.943	BBA	0.81	17.6849	960.4539	3.1760
43.388	BBA	1.23	346.3489	29280.4277	96.8240
			Totals:	30240.8817	100.0000

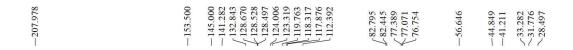
Spectrum Plot Report

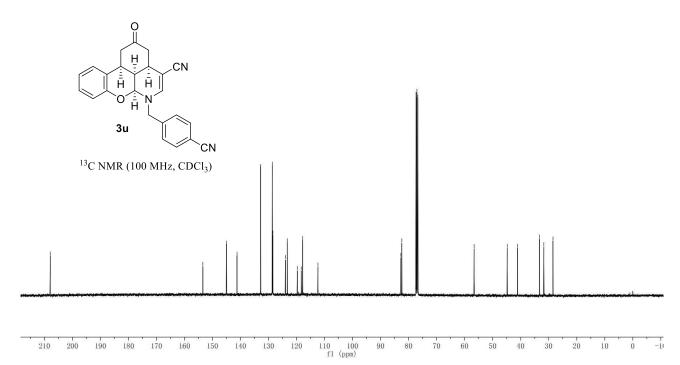


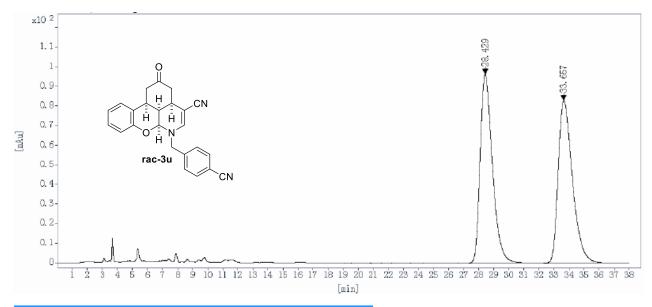


Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
14.949	BB	0.46	75.4141	2311.8191	49.2566
18.544	BB	0.50	73.3446	2381.6030	50.7434
			Totals:	4693.4221	100.0000

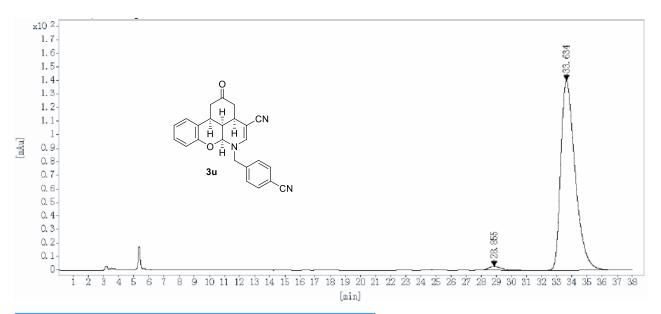


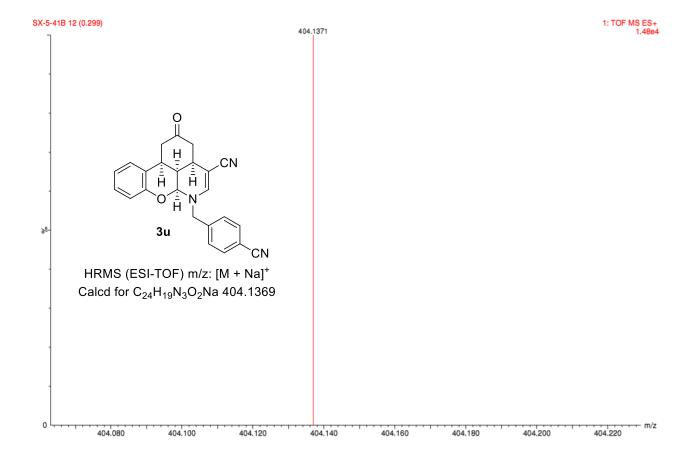

Ret Time	Peak	Width	Height	Area	Area
[min]	Type	[min]	[mAU]	[mAU*s]	[%]
14.985	BB	0.51	13.5490	460.4789	2.2778
18.395	BB	0.49	614.1894	19755.2012	97.7222
			Totals:	20215.6801	100.0000

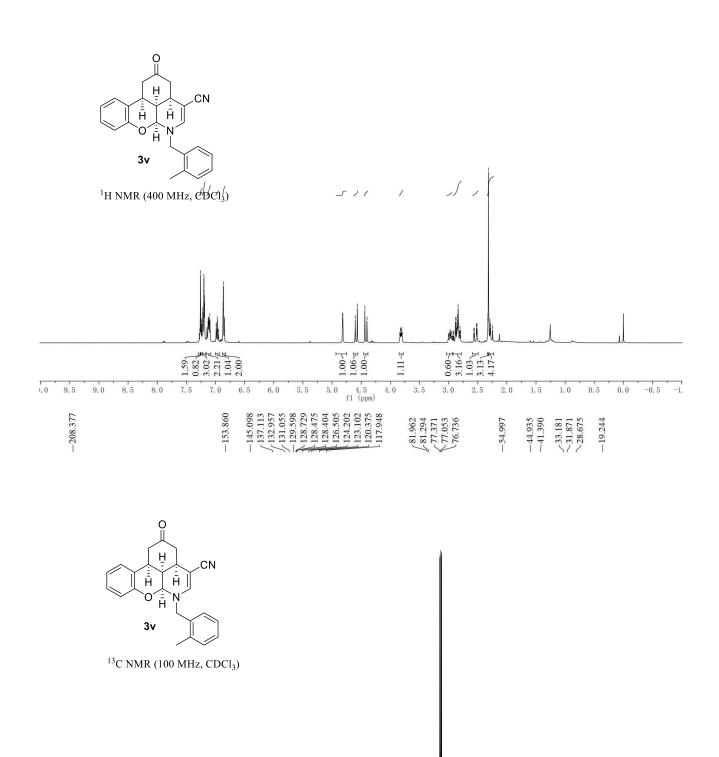




¹H NMR (400 MHz, CDCl₃)

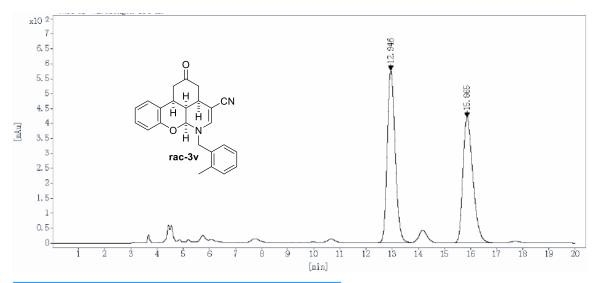




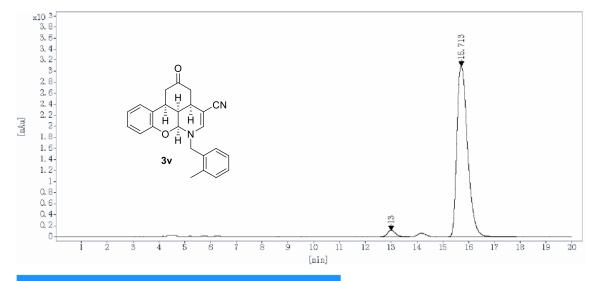


Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
28.429	BB	0.86	96.3336	5442.7441	50.0874
33.657	BB	1.00	82.9998	5423.7505	49.9126
			Totals:	10866.4946	100.0000

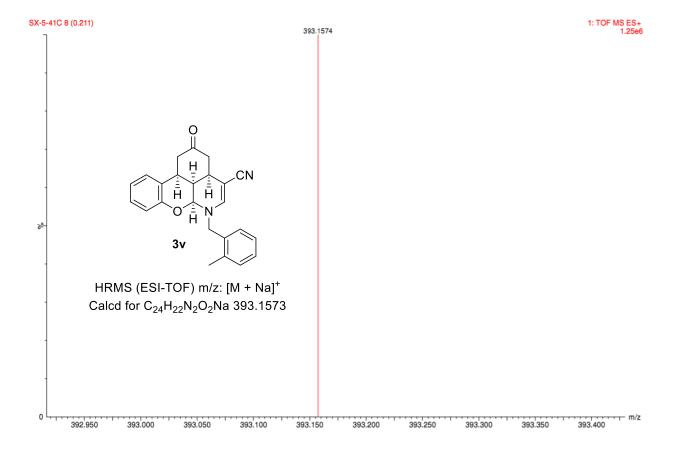
Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
28.855	BB	0.83	2.6570	155.2451	1.6558
33.634	BB	1.01	139.9056	9220.6807	98.3442
			Totals:	9375 9258	100 0000

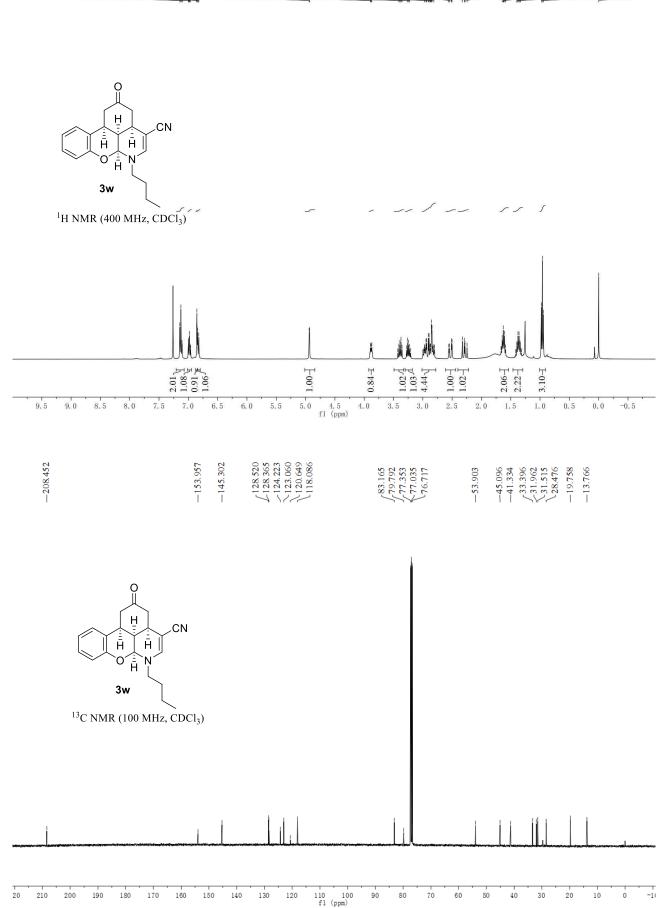

110 100 fl (ppm)

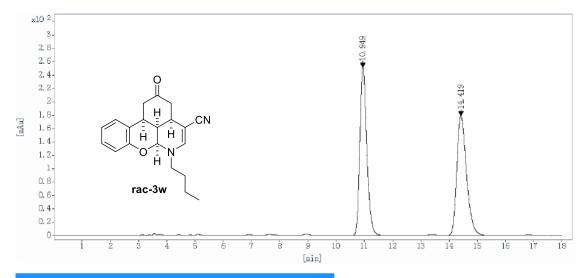
170

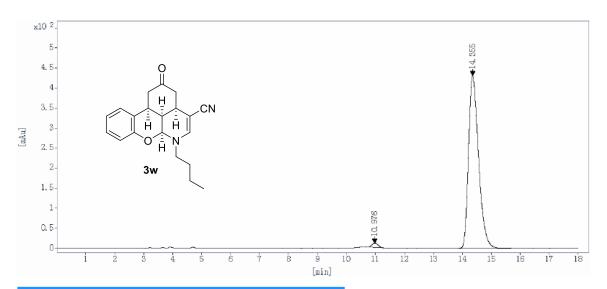

160

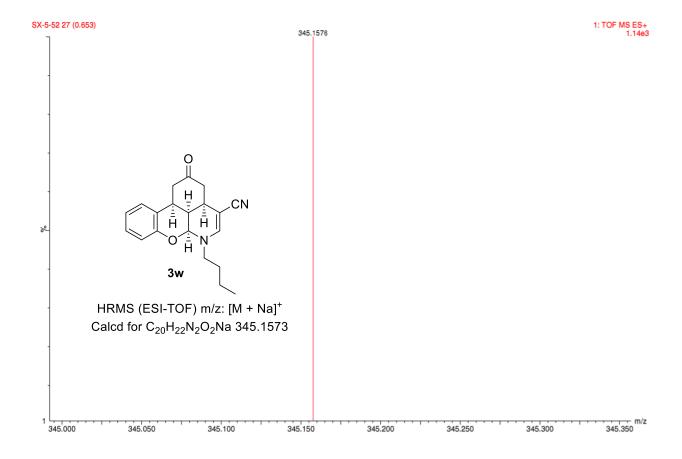
150

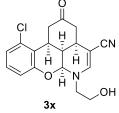

140



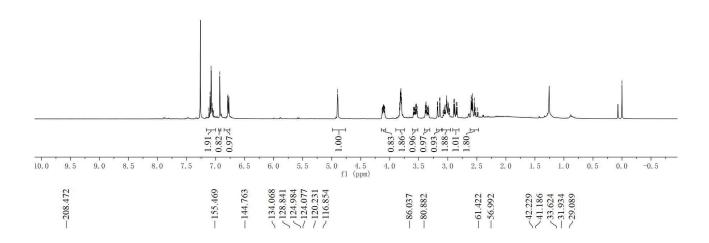

Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
12.946	BV	0.33	575.9871	12219.7900	52.3236
15.865	BB	0.41	420.8748	11134.4795	47.6764
			Totals:	23354.2695	100.0000

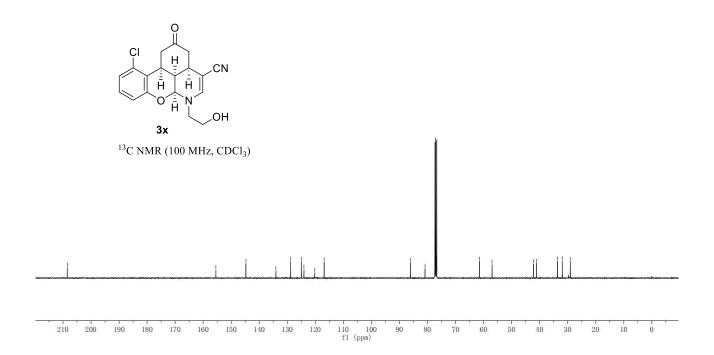

Ret Time	Peak	Width	Height	Area	Area
[min]	Type	[min]	[mAU]	[mAU*s]	[%]
13.000	BV	0.34	115.5932	2506.0115	2.7485
15.713	BB	0.45	3091.0000	88670.5156	97.2515
			Totals:	91176.5271	100.0000

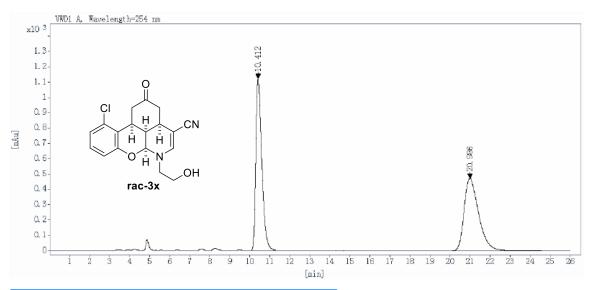


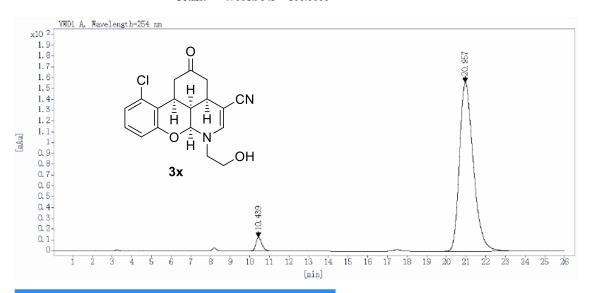


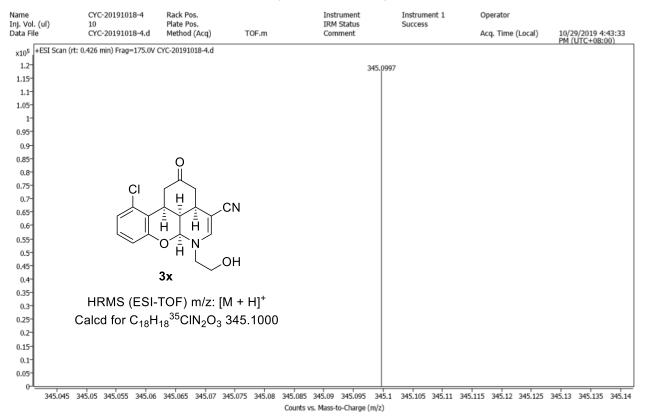
Ret Time	Peak	Width	Height	Area	Area
[min]	Type	[min]	[mAU]	[mAU*s]	[%]
10.949	BB	0.26	250.8640	4297.1152	50.1527
14.419	BB	0.37	178.6262	4270.9492	49.8473
			Totals:	8568.0645	100.0000



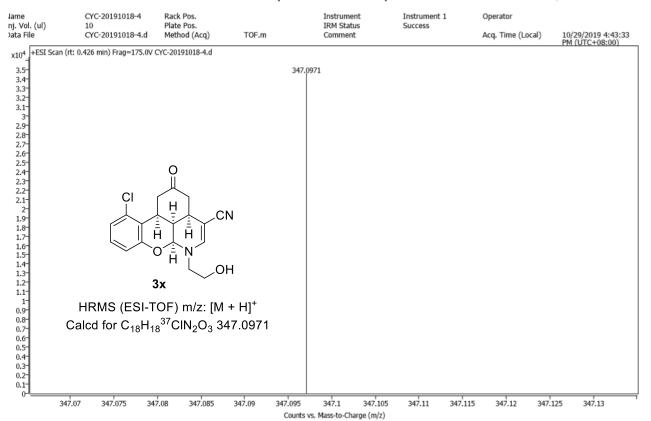

Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
10.976	BB	0.24	10.9160	166.9727	1.5892
14.355	BB	0.37	429.9457	10339.5820	98.4108
			Totals:	10506.5547	100.0000

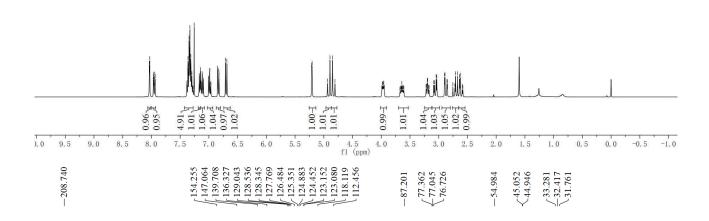


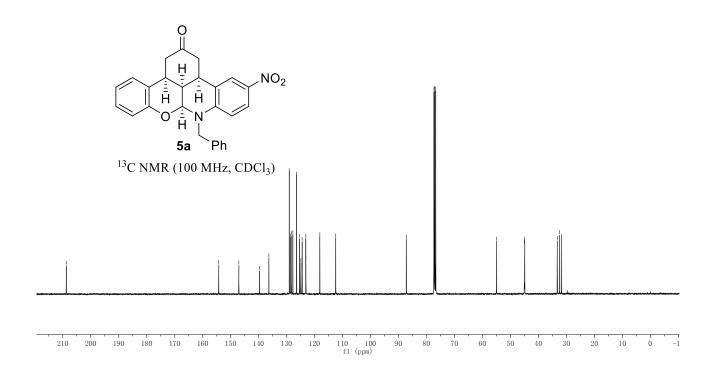

¹H NMR (400 MHz, CDCl₃) $\int I \int$

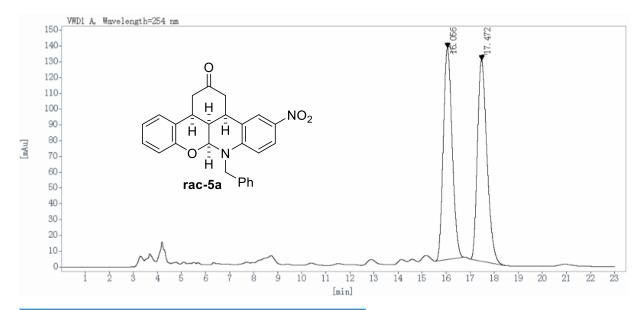


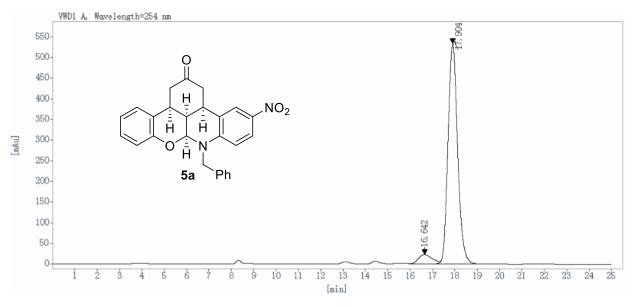
Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
10.412	BB	0.32	1122.2574	23385.5273	49.7544
20.986	BB	0.77	472.1183	23616.3770	50.2456
			Totals:	47001.9043	100.0000

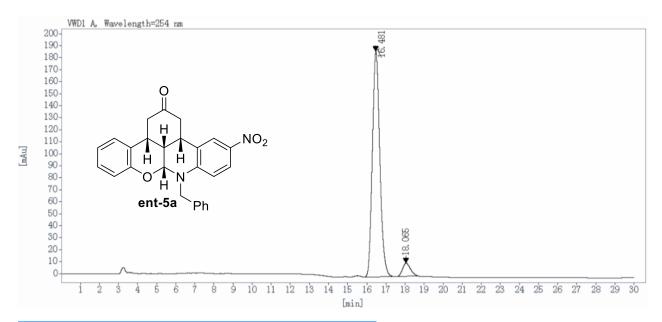


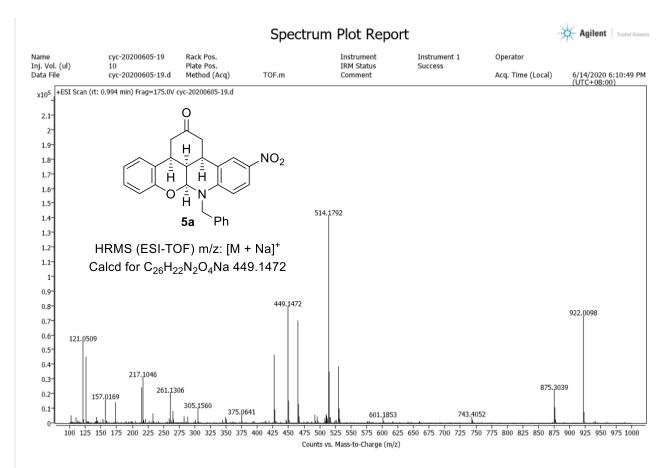

Ret Time [min]			Height [mAU]	Area [mAU*s]	Area [%]
10.439	BB	0.33	12.6559	273.7483	3.4554
20.957	BB	0.75	155.8393	7648.5938	96.5446
			Totals:	7922.3420	100.0000

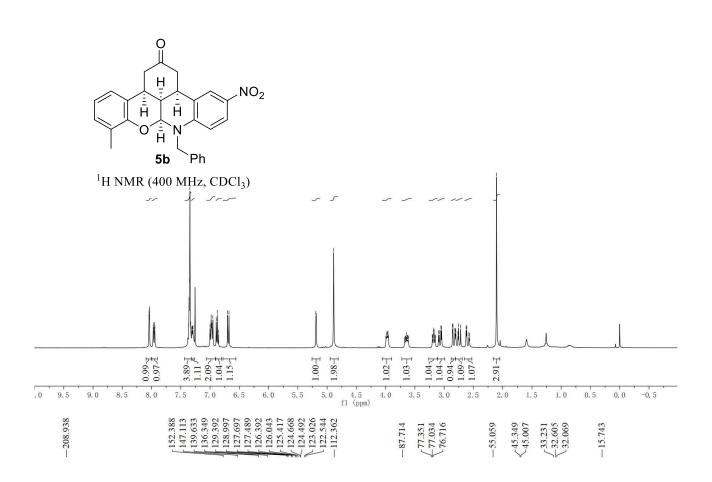


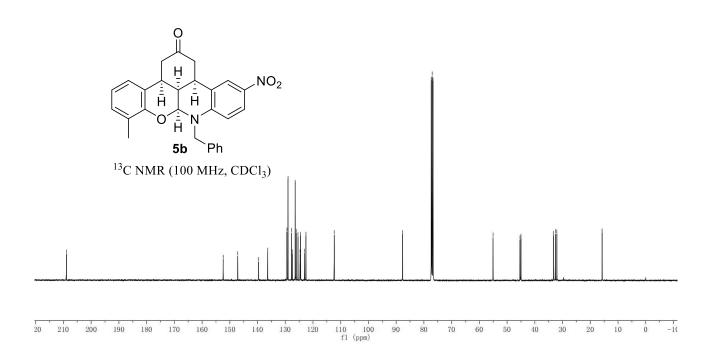


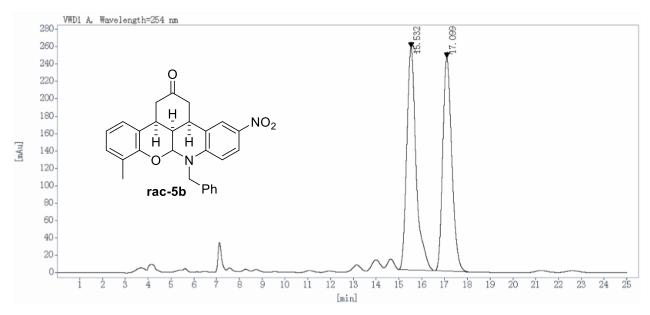




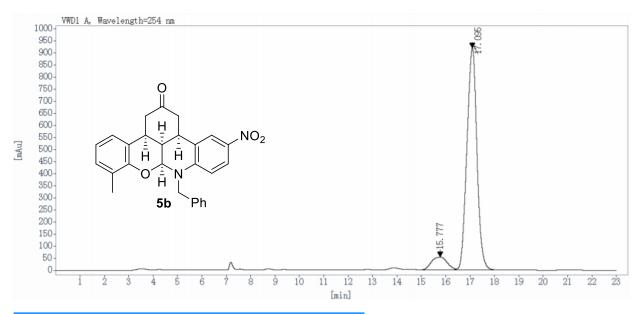

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.056	BB	0.40	134.2299	3425.7644	49.3655
17.472	BB	0.43	127.4256	3513.8259	50.6345
			Totals:	6939.5903	100.0000

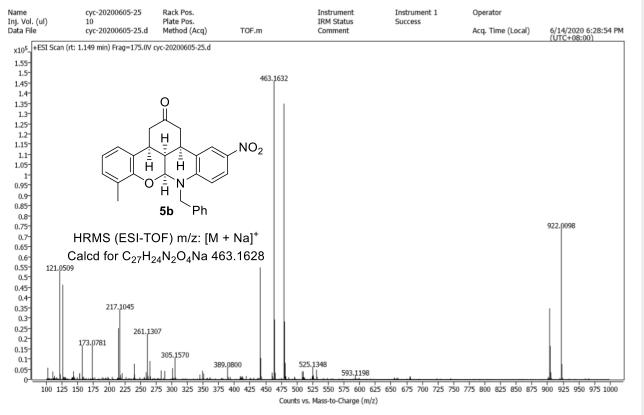


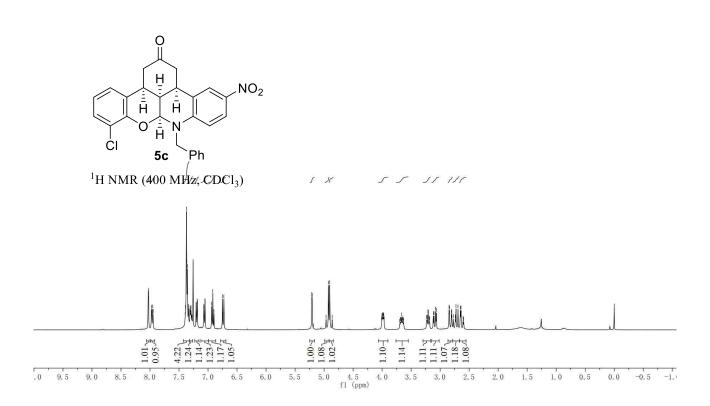

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.642	BV E	0.66	22.1565	948.1024	5.6313
17.904	VB R	0.46	533.9049	15888.1875	94.3687
			Totals:	16836.2899	100.0000

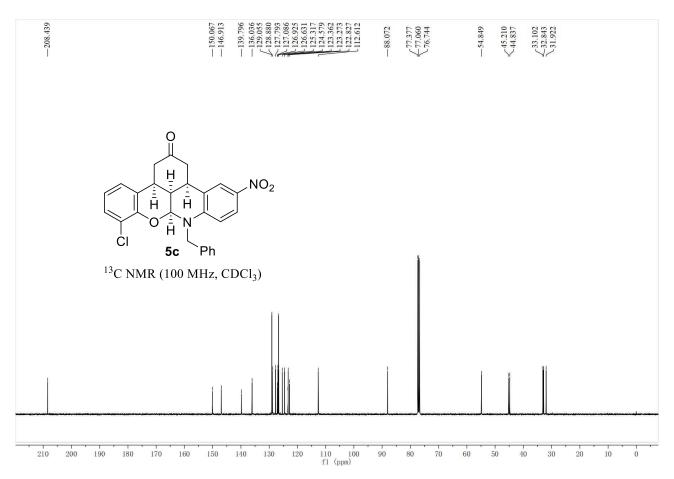


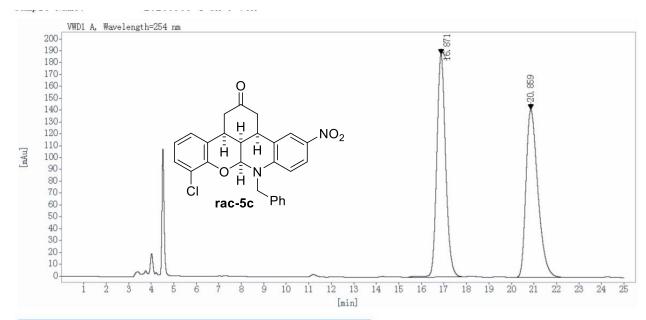
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.481	$_{ m BB}$	0.42	188.0964	5119.7842	94.2221
18.065	BBA	0.45	10.9120	313.9573	5.7779
			Totals:	5433.7415	100.0000

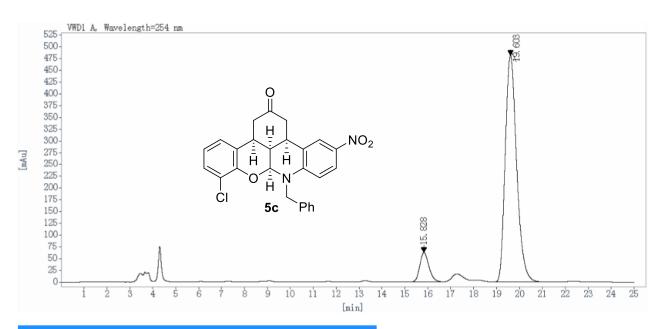


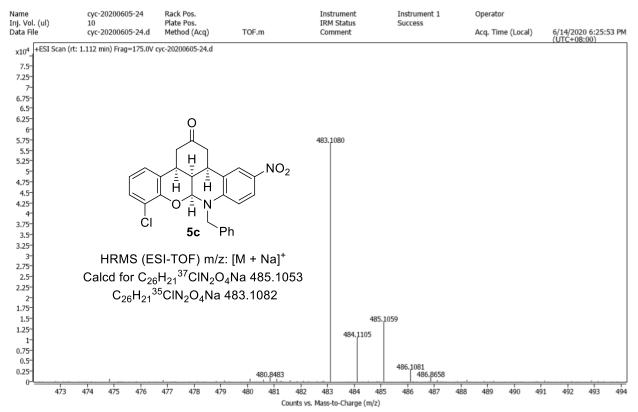


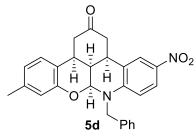

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.532	BB	0.43	255.8836	7279.7813	51.8132
17.099	BB	0.43	245.2826	6770.2598	48.1868
			Totals:	14050.0410	100.0000

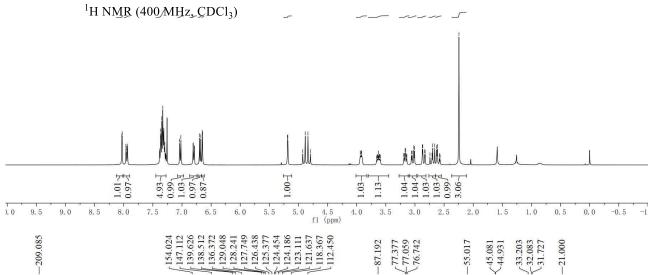


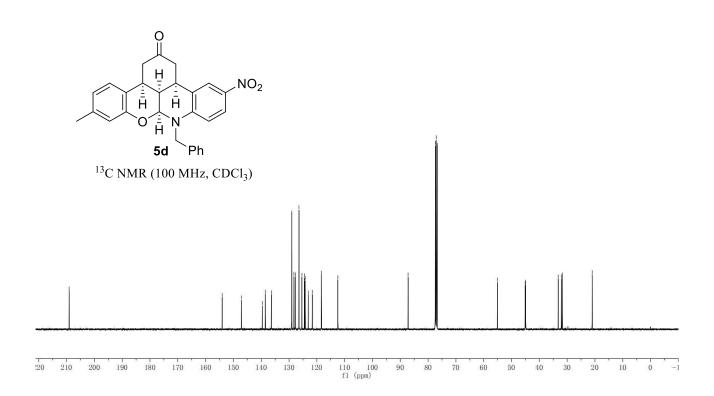

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.777	BV E	0.72	53.1608	2354.1287	8.1992
17.095	VB R	0.45	920.8774	26357.5098	91.8008
			Totals:	28711.6384	100.0000

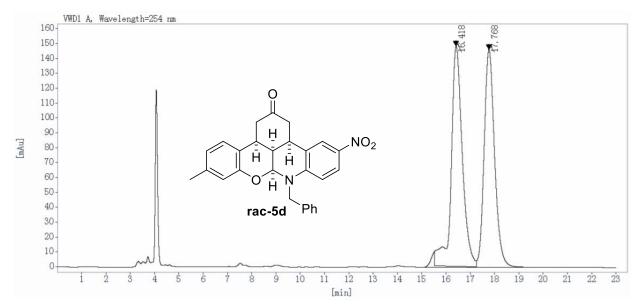


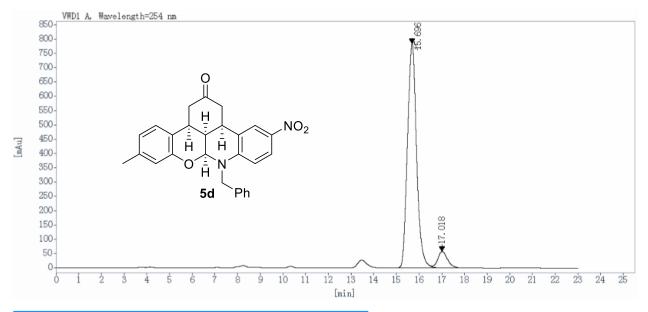


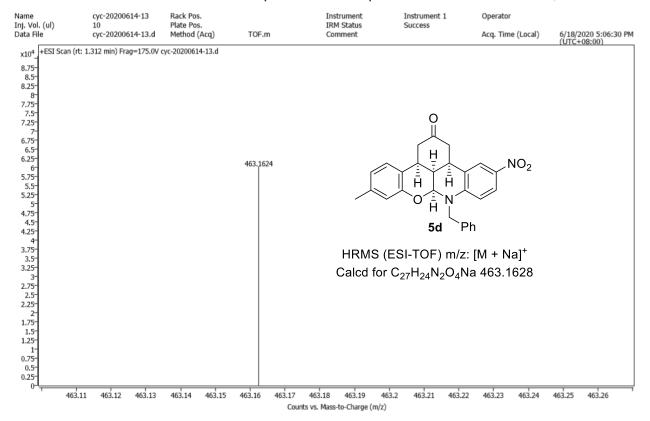

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.871	BB	0.42	187.8562	5110.5825	49.5272
20.859	BB	0.57	141.7777	5208.1523	50.4728
			Totals:	10318.7349	100.0000

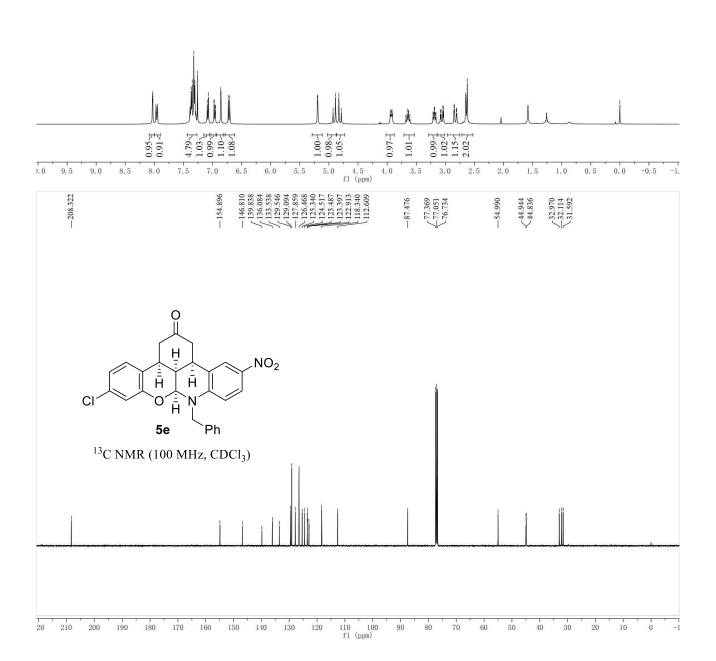


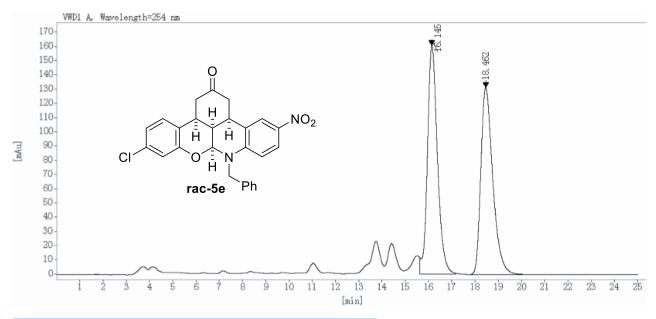

Ret Time	Peak	Width	Height	Area	Area
[min]	Type	[min]	[mAU]	[mAU*s]	[%]
15.828	$_{ m BB}$	0.42	62.4036	1711.3114	9.3388
19.603	BB	0.54	481.4364	16613.4668	90.6612
			Totals:	18324.7782	100.0000



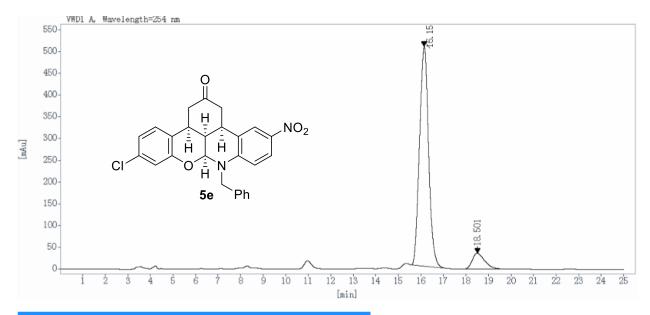


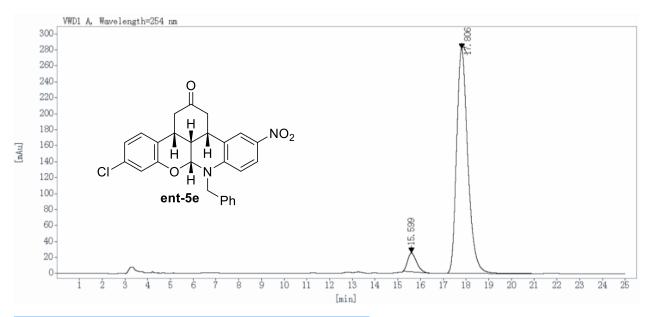



Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.418	MM T	0.53	148.0569	4695.5601	50.7735
17.768	VB R	0.48	146.4209	4552.4863	49.2265
			Totals:	9248.0464	100.0000

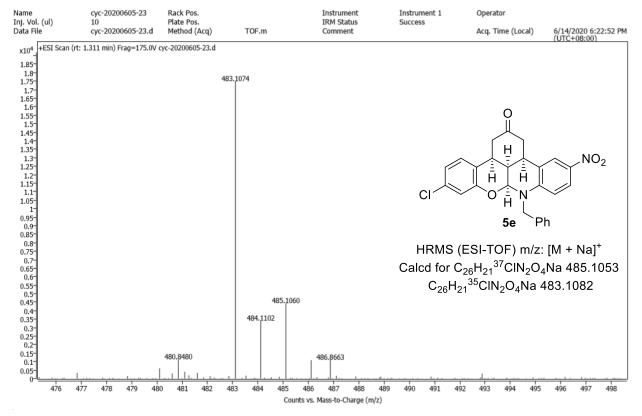


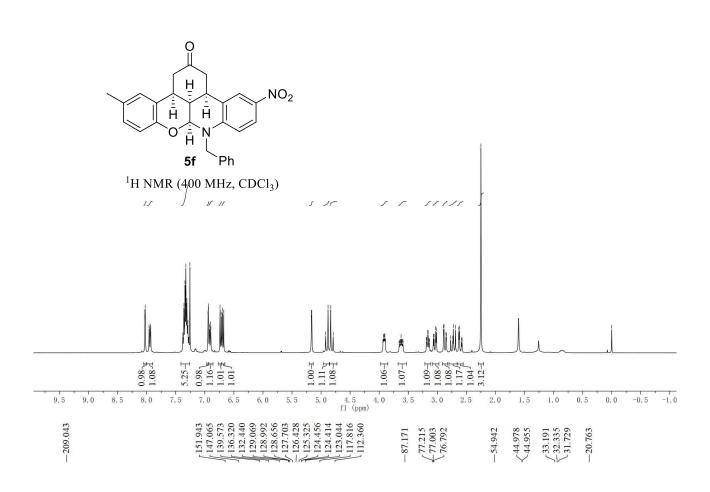
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.696	BV R	0.43	783.5981	21782.9766	92.7739
17.018	VB E	0.45	57.3920	1696.6659	7.2261
			Totals:	23479.6425	100.0000

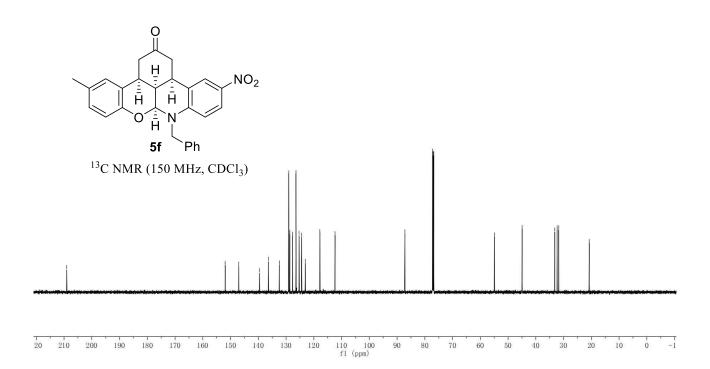


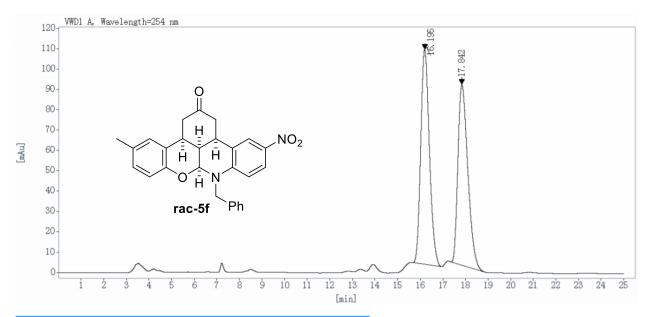


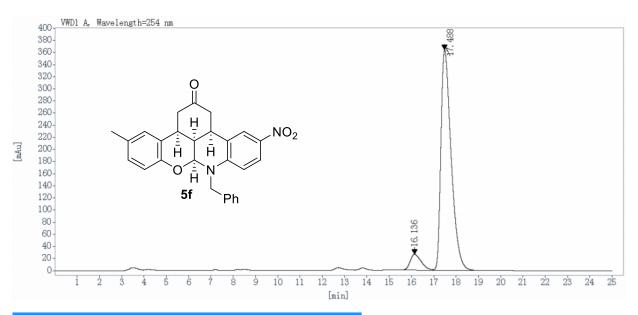
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.145	MM	0.49	160.8528	4775.3569	50.4112
18.462	BB	0.55	131.4129	4697.4517	49.5888
			Totals:	9472.8086	100.0000

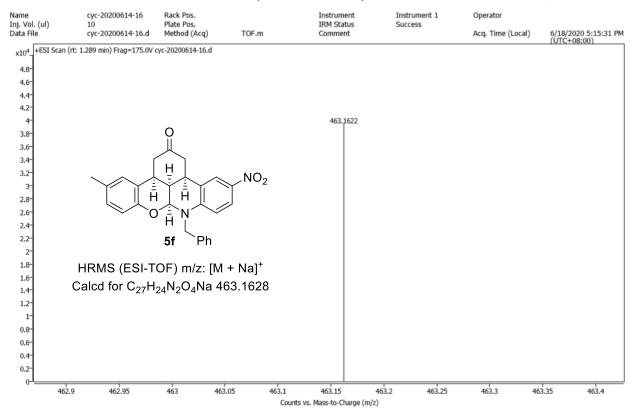


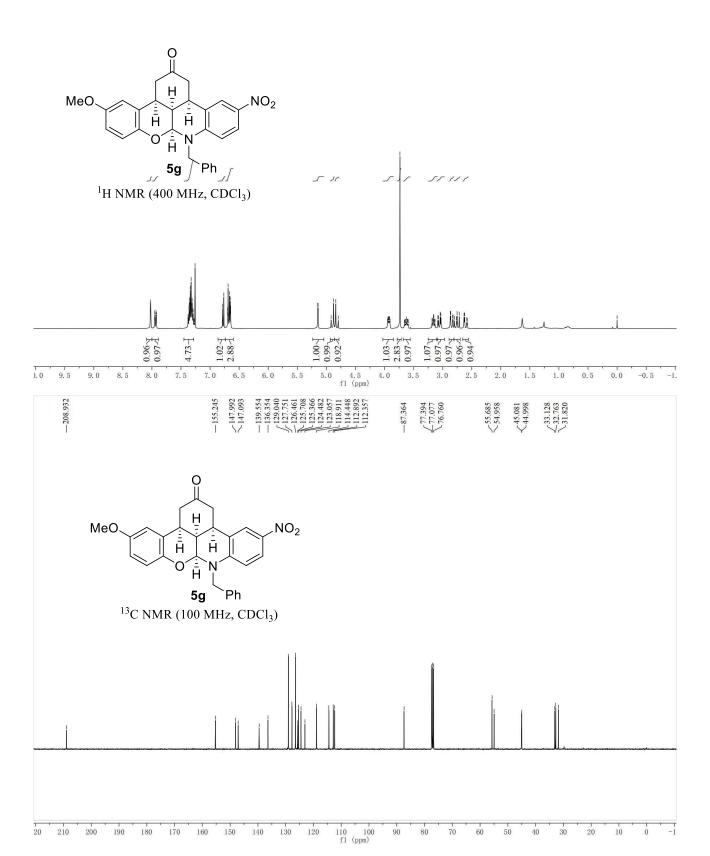

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.150	BB	0.44	505.5937	14174.6738	91.3640
18.501	BBA	0.57	35.9966	1339.8384	8.6360
			Totals:	15514.5122	100.0000

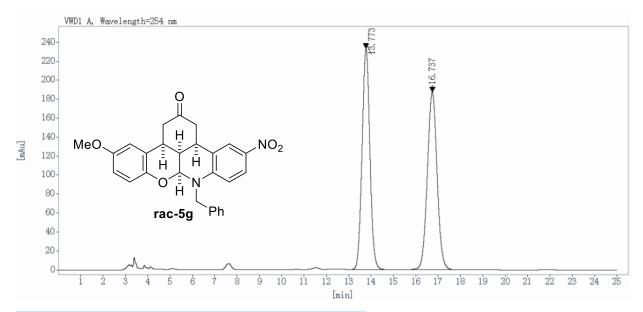



Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.599	$_{ m BB}$	0.43	23.6384	646.1224	6.2718
17.806	$_{ m BB}$	0.53	281.4138	9655.9111	93.7282
			Totals:	10302.0335	100.0000

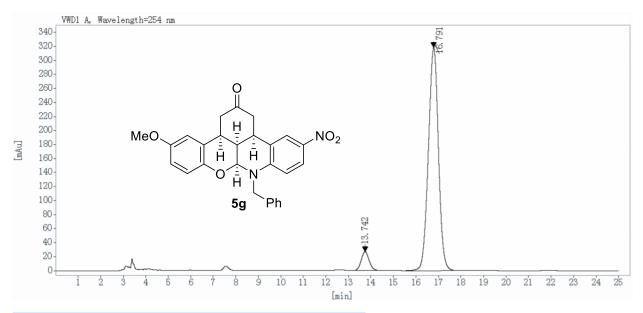


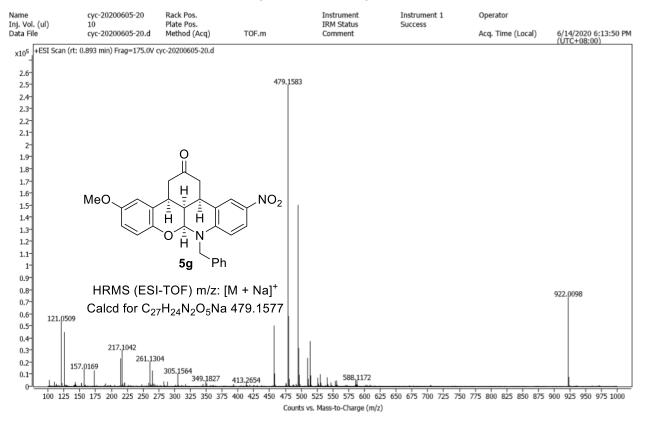


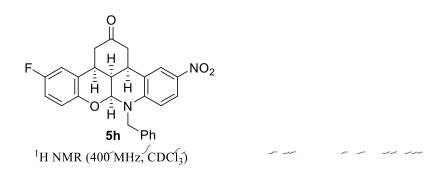

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.195	BB	0.41	105.8552	2810.1204	50.9903
17.842	BB	0.47	88.9930	2700.9700	49.0097
			Totals:	5511.0903	100.0000

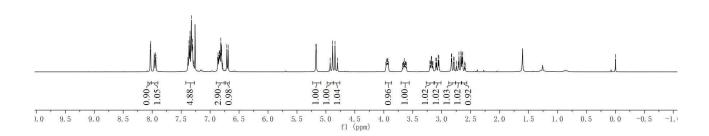


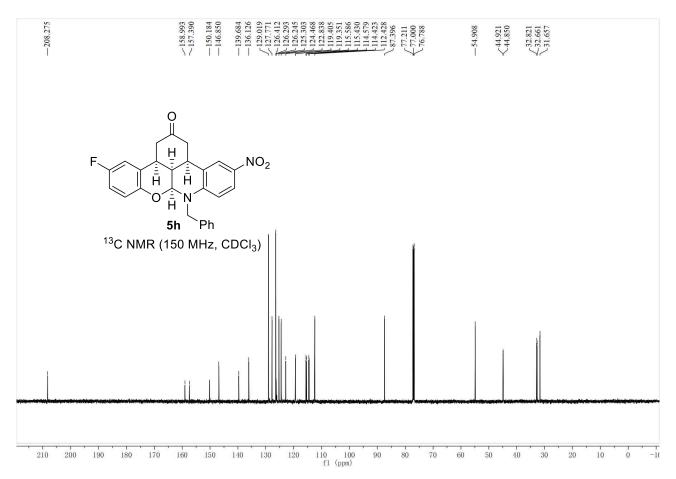
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.136	BV	0.54	25.8398	887.9476	7.1103
17.488	VB	0.49	363.9063	11600.2256	92.8897
			Totals:	12488.1732	100.0000

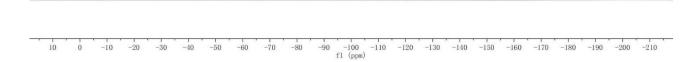


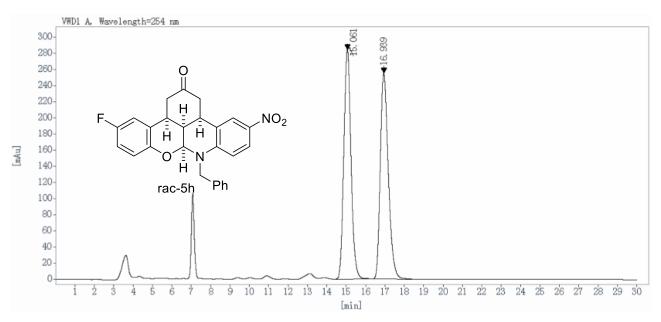


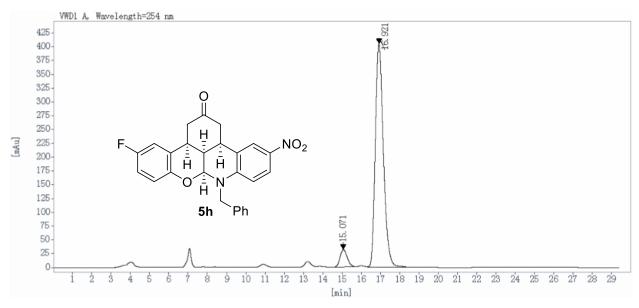

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.773	BB	0.38	233.3705	5665.1899	49.8232
16.737	BB	0.47	187.4850	5705.3984	50.1768
			Totals:	11370.5884	100.0000

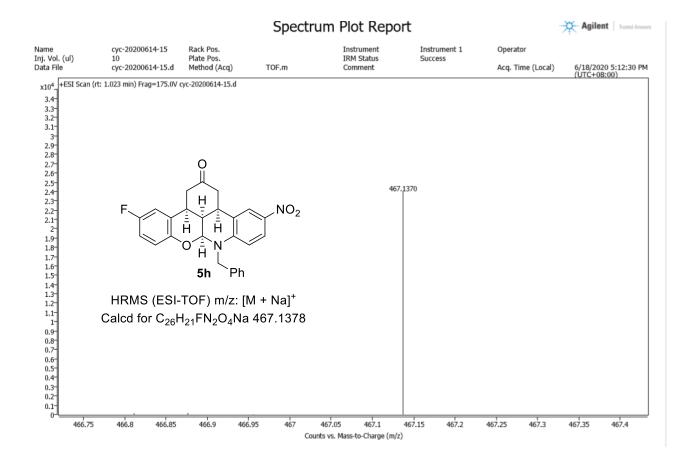


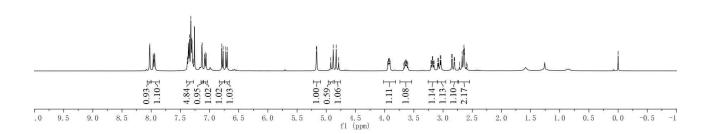

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.742	BB	0.38	26.8399	651.3505	6.1917
16.791	BB	0.48	318.5732	9868.4443	93.8083
			Totals:	10519.7949	100.0000

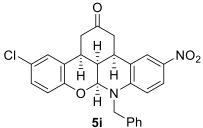


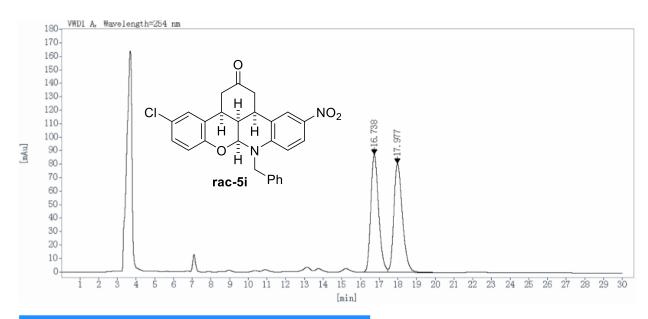




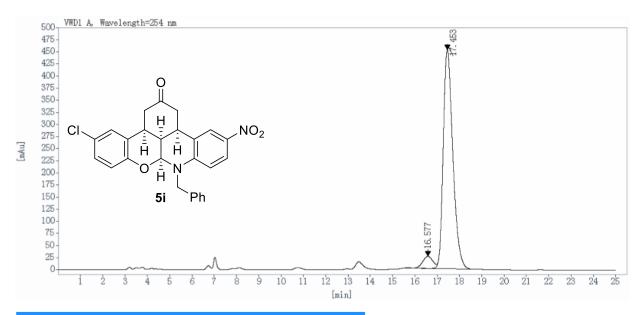


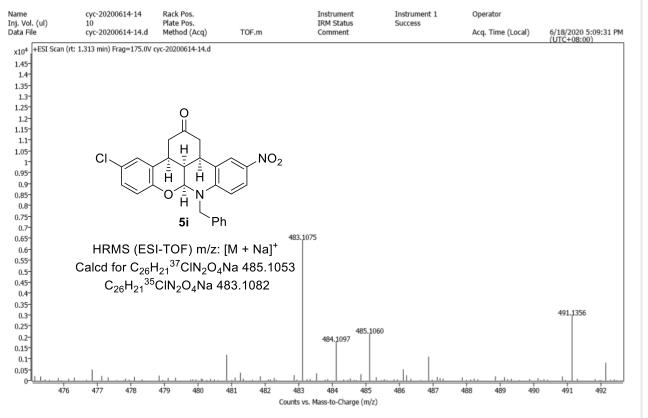

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.061	BB	0.40	284.2456	7307.6021	49.9185
16.939	BB	0.44	254.7342	7331.4688	50.0815
			Totals:	14639.0708	100.0000

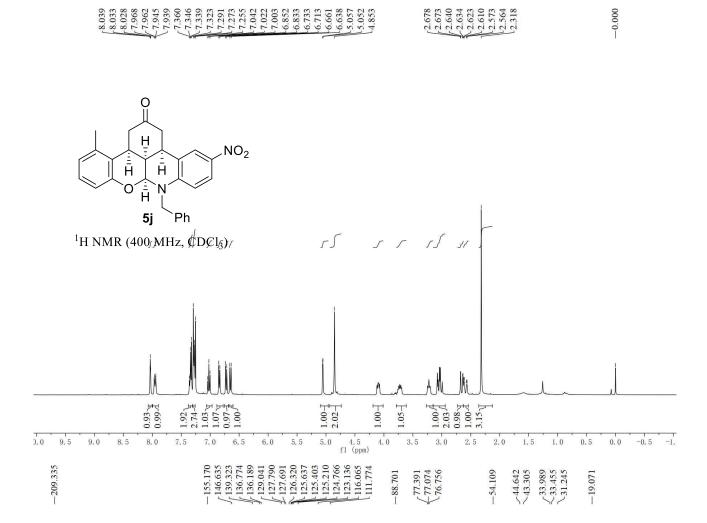

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.071	BB	0.40	31.4864	812.9145	6.4473
16.921	BB	0.45	405.0982	11795.6201	93.5527
			Totals:	12608.5346	100.0000

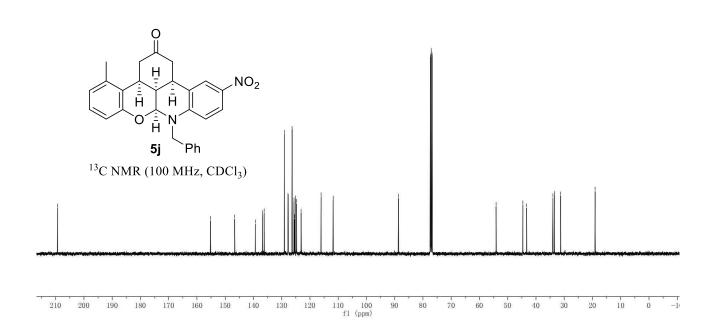


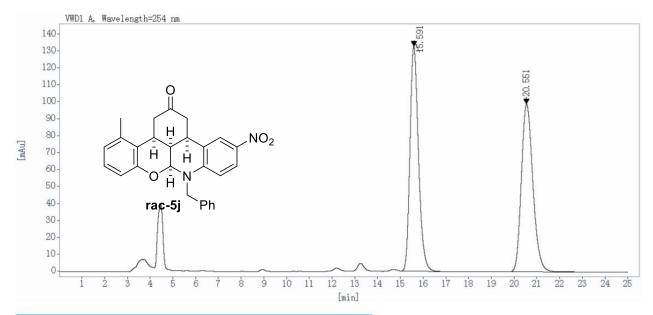
when so some

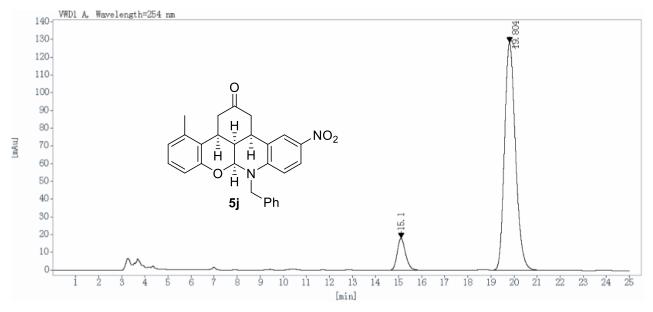


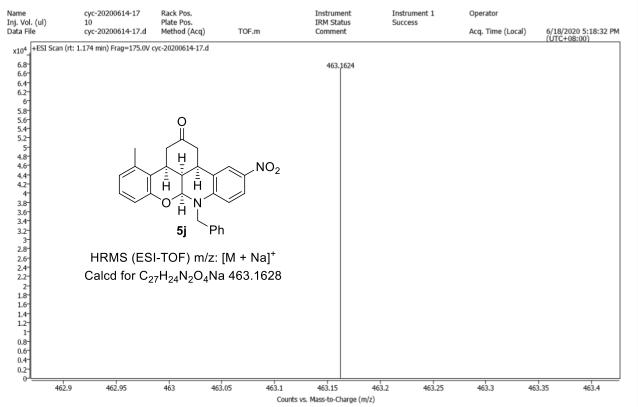



Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.738	BV	0.45	87.5782	2550.5234	49.7469
17.977	VB	0.49	80.8958	2576.4795	50.2531
			Totals:	5127.0029	100.0000

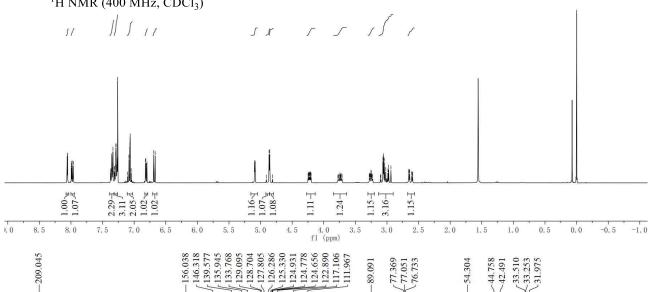


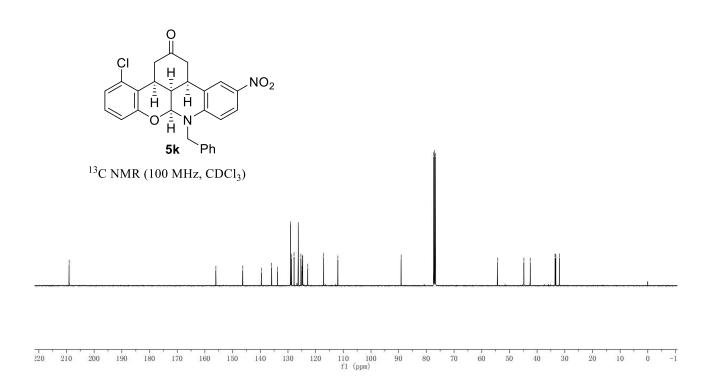

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.577	VV E	0.50	25.0041	792.6057	5.5188
17.453	VB R	0.46	452.4643	13569.3525	94.4812
			Totals:	14361.9582	100.0000

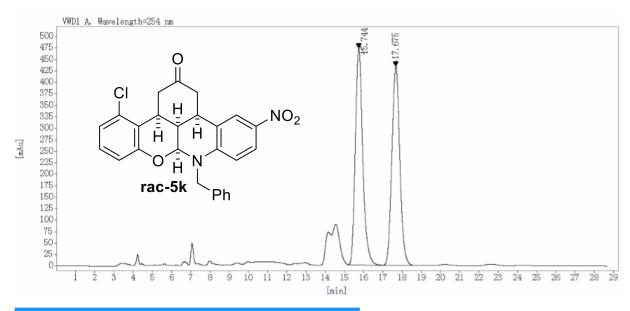


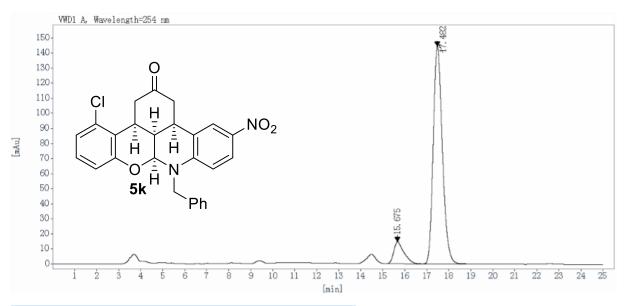


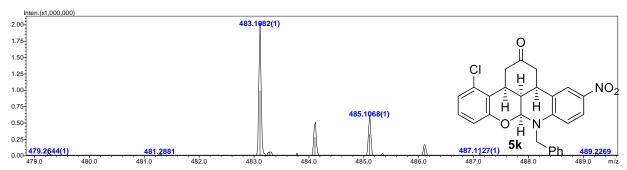
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.591	BB	0.40	132.6123	3436.3503	49.7551
20.551	BB	0.55	98.7271	3470.1843	50.2449
			Totals:	6906.5347	100.0000

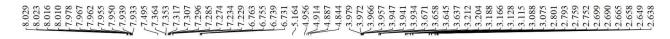


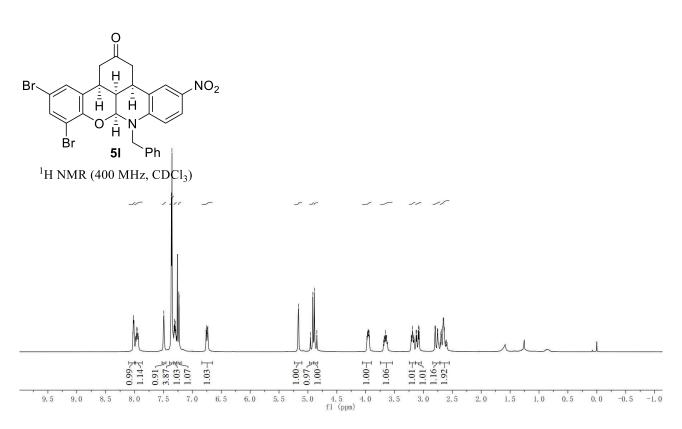

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.100	$_{ m BB}$	0.39	18.1310	457.0802	9.7377
19.804	BB	0.51	128.4601	4236.8535	90.2623
			Totals:	4693.9337	100.0000



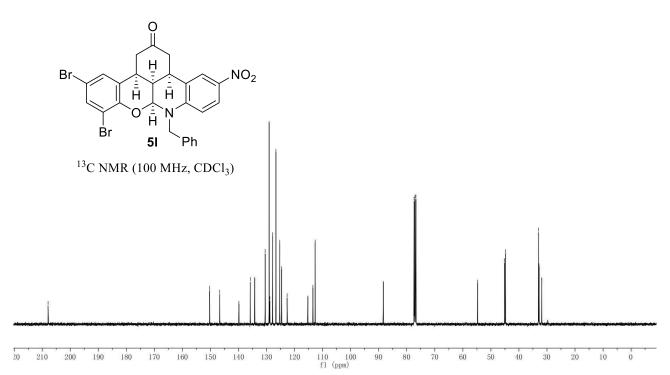


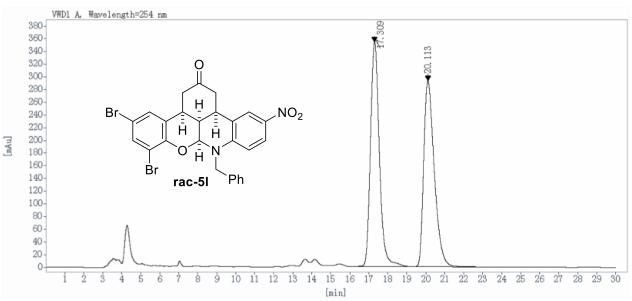


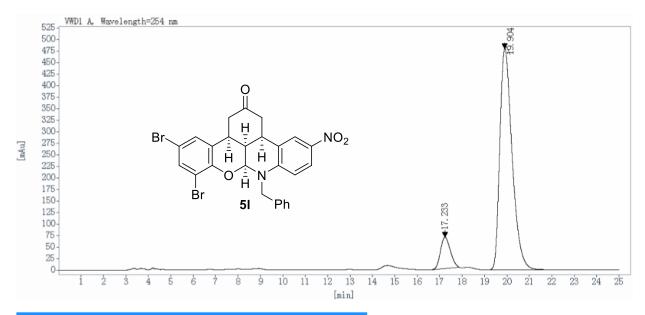

Ret Time [min]	Peak Type		Height [mAU]	Area [mAU*s]	Area [%]
15.744	$^{\mathrm{BB}}$	0.41	472.2356	12676.2998	50.4532
17.675	$^{\mathrm{BB}}$	0.45	433.5867	12448.5723	49.5468
			Totals:	25124.8721	100.0000

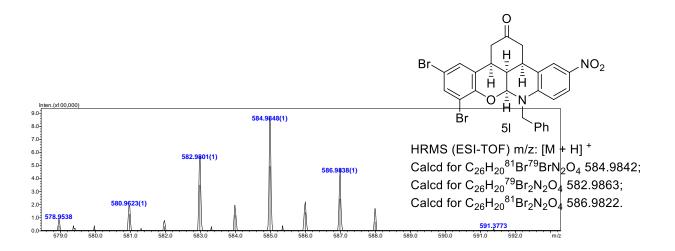


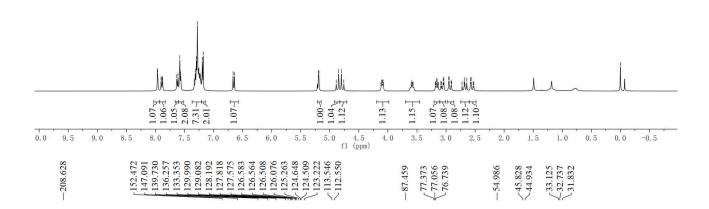
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.675	$_{ m BB}$	0.47	14.4694	467.3577	10.0410
17.482	$_{ m BB}$	0.45	144.3224	4187.1289	89.9590
			Totals:	4654.4866	100.0000

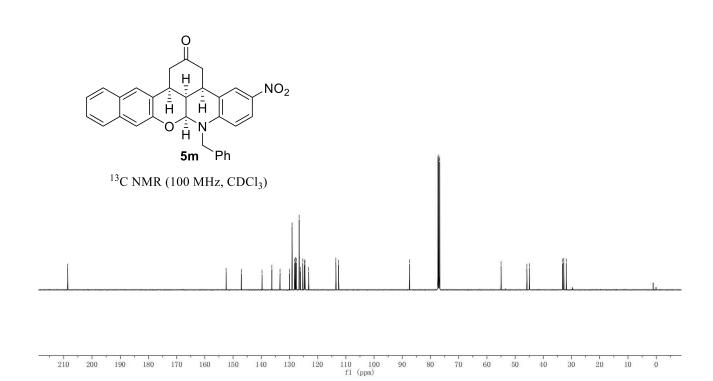


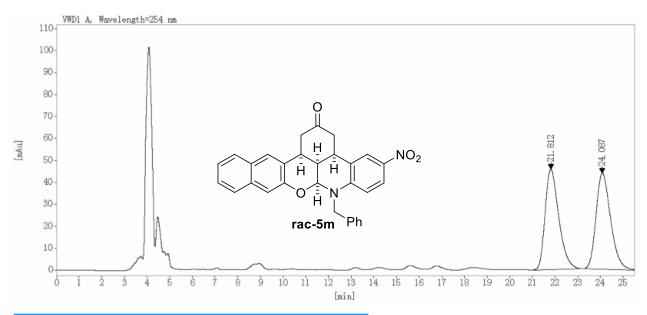

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{21}^{37}CIN_2O_4Na$ 485.1053 $C_{26}H_{21}^{35}CIN_2O_4Na$ 483.1082



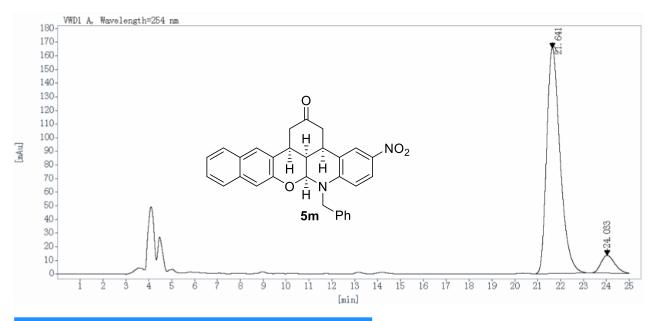


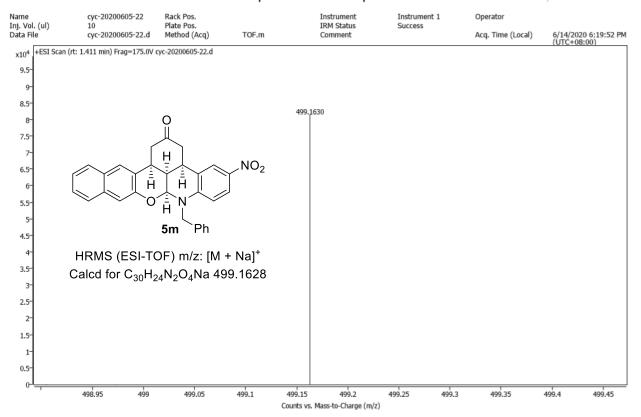



Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
17.309	BB	0.50	354.0330	11529.5527	50.4005
20.113	BB	0.59	293.0110	11346.3350	49.5995
			Totals:	22875.8877	100.0000

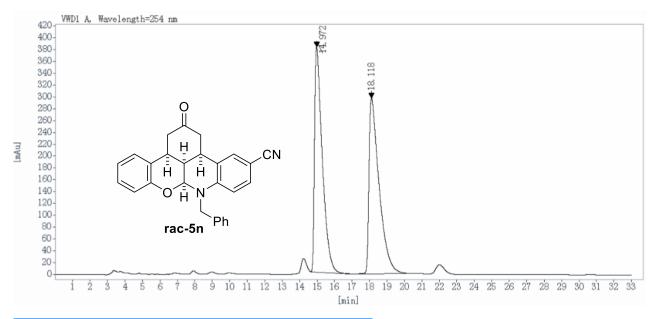


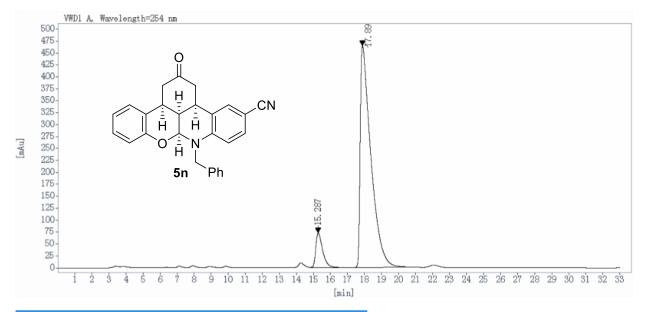
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
17.233	BBA	0.48	67.7496	2067.2837	10.1454
19.904	BB	0.59	479.7300	18309.2090	89.8546
			Totals:	20376.4927	100.0000

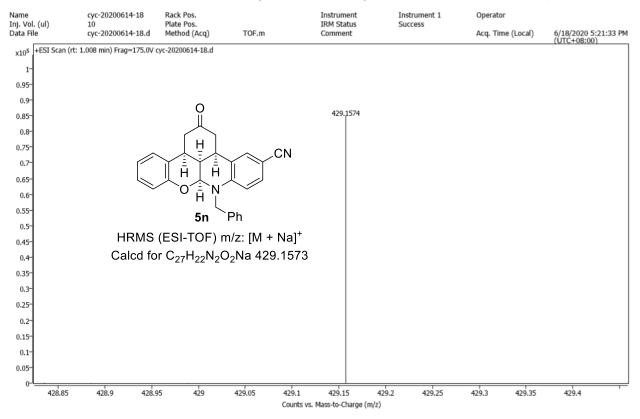


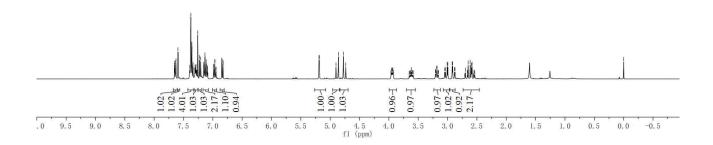


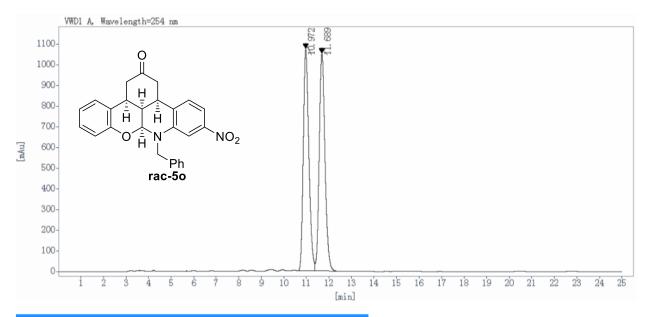
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
21.812	BB	0.64	45.6682	1912.1482	49.5249
24.087	BB	0.69	43.7092	1948.8364	50.4751
			Totals:	3860.9846	100.0000

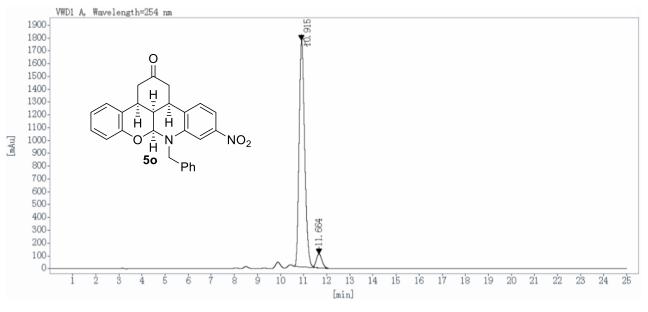

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
21.641	BB	0.63	165.4010	6751.2100	92.5548
24.033	BBA	0.65	12.9086	543.0745	7.4452
			Totals:	7294.2844	100.0000

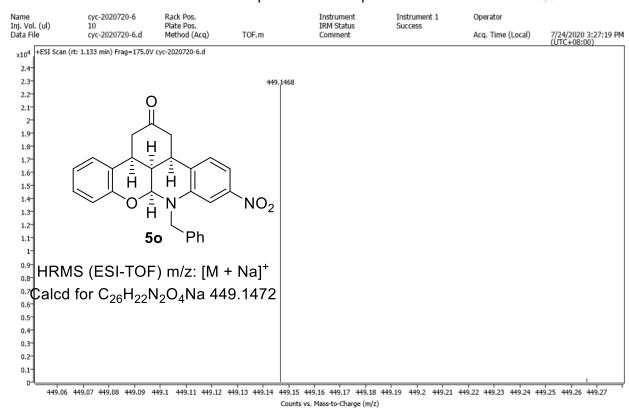


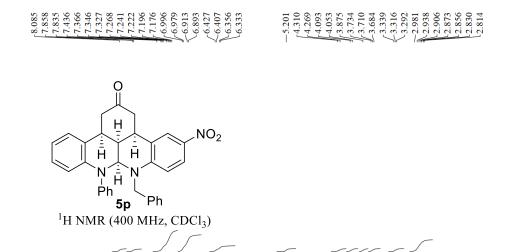


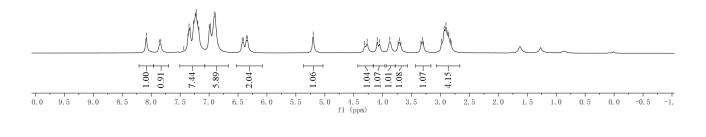

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
14.972	BB	0.45	379.9055	11699.4131	49.4676
18.118	BB	0.59	296.5181	11951.2559	50.5324
			Totals:	23650.6689	100.0000


Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.287	BB	0.42	72.2633	2017.2246	9.0914
17.890	BBA	0.62	464.9817	20171.1328	90.9086
			Totals:	22188.3574	100.0000

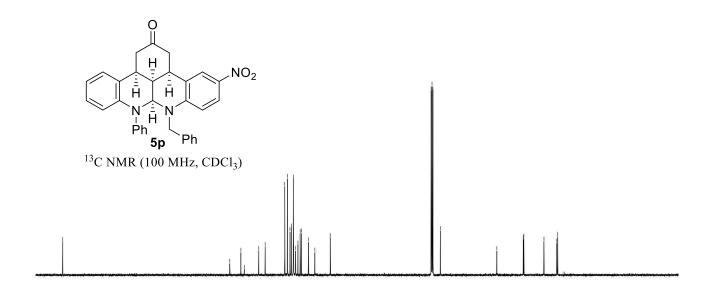


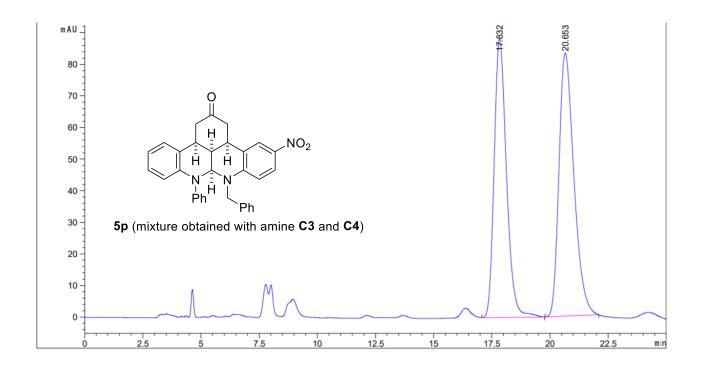


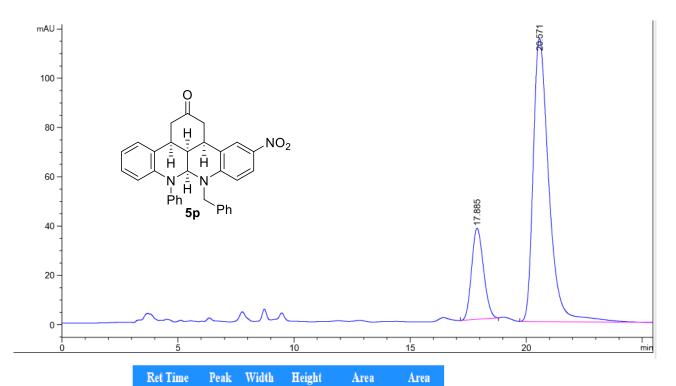

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.972	$_{\mathrm{BV}}$	0.26	1074.5470	18399.5684	49.6717
11.689	VB	0.27	1051.9778	18642.8242	50.3283

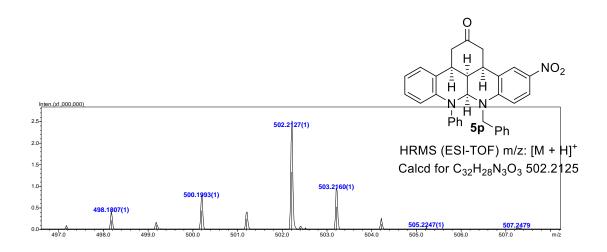


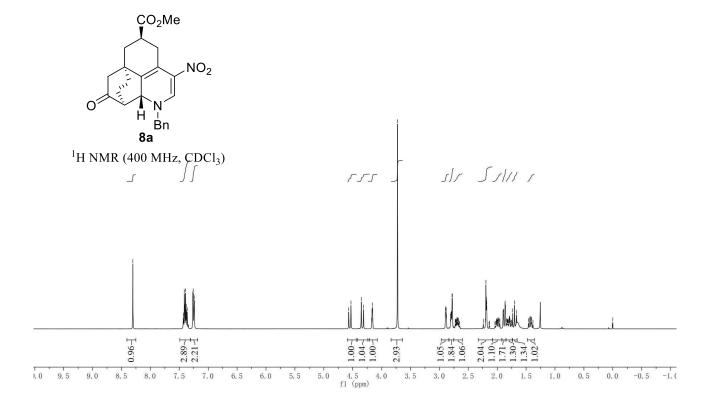
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.915	BVR	0.26	1768.8953	29567.3555	94.2101
11.664	VB E	0.26	108.5706	1817.1340	5.7899
			Totals:	31384.4895	100.0000





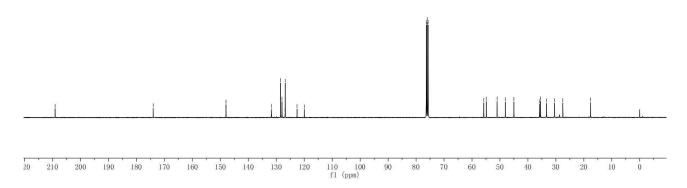


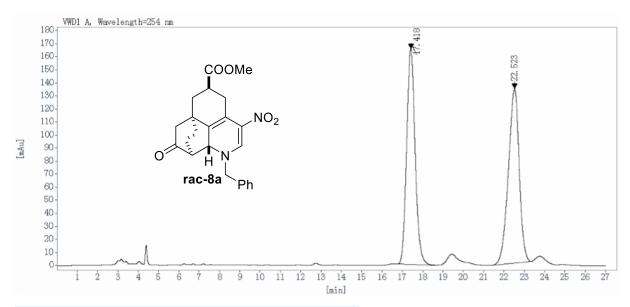

Ret T [mi				Height [mAU]	Area [mAU*s]	Area [%]
1-						
1	17.832	BB	0.5682	3249.40503	88.19733	46.6104
2	20.653	BBA	0.6840	3722.01636	83.36429	53.3896

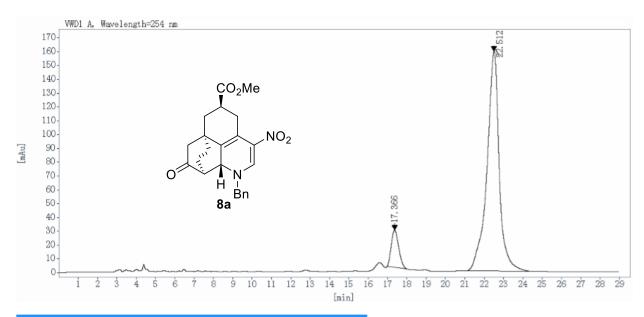

 [min]
 Type
 [min]
 [mAU]
 [mAU*s]
 [%]

 1
 17.885
 BB
 0.5524
 1317.33337
 36.98318
 19.6144

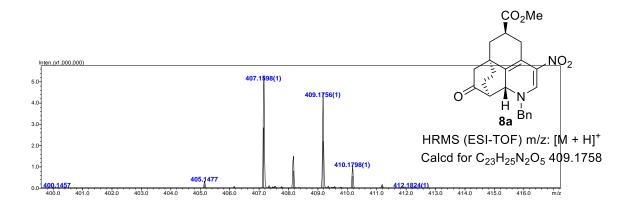
 2
 20.571
 BBA
 0.7140
 5398.82031
 114.93725
 80.3856

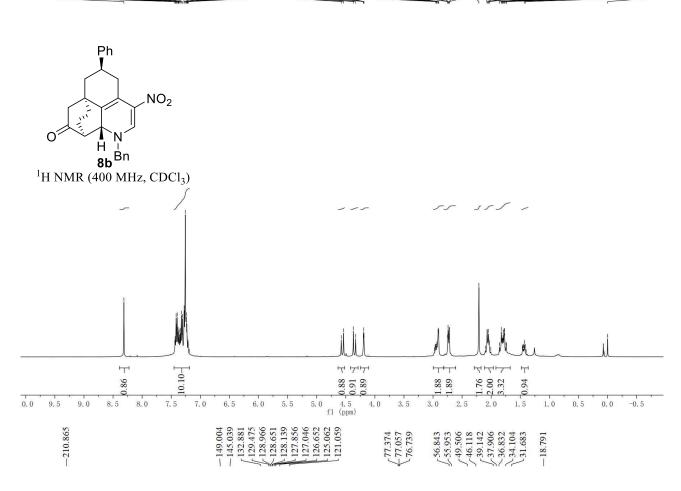


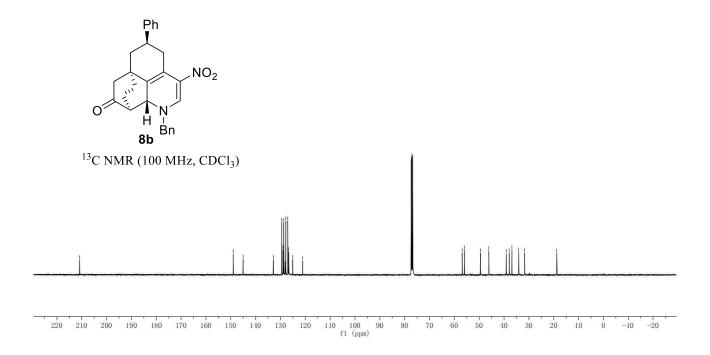


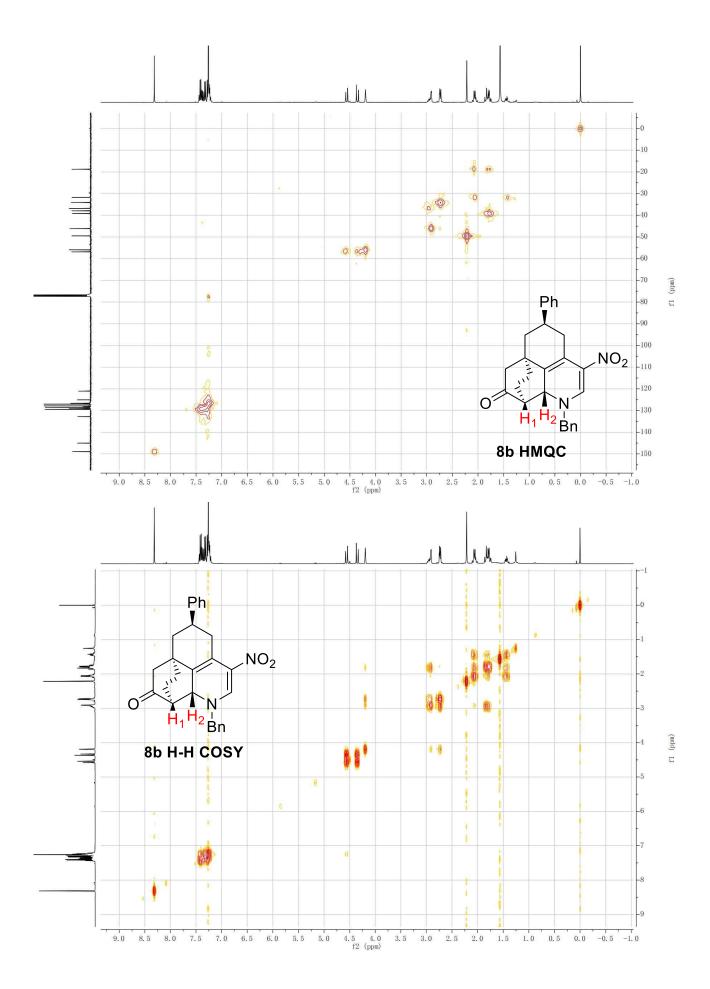


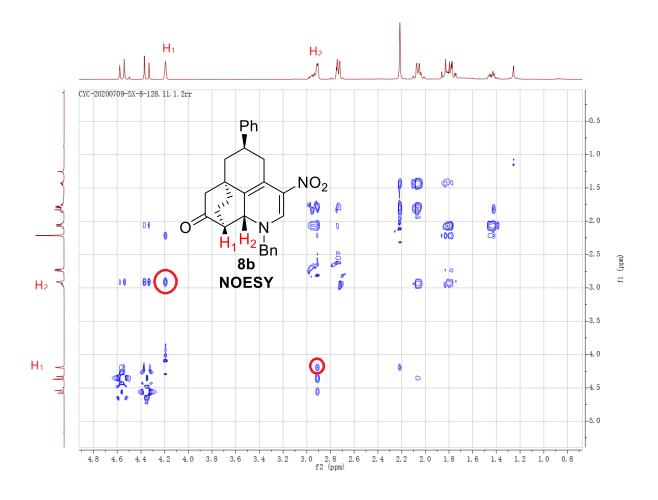
¹³C NMR (100 MHz, CDCl₃)

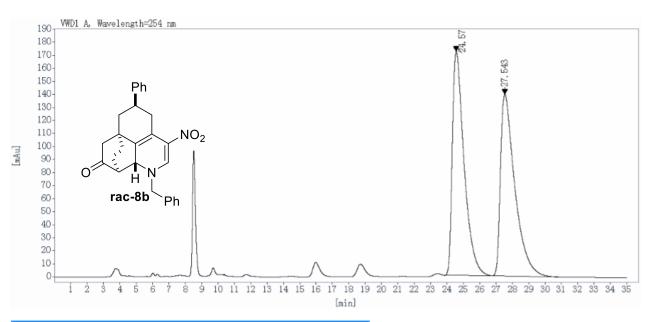


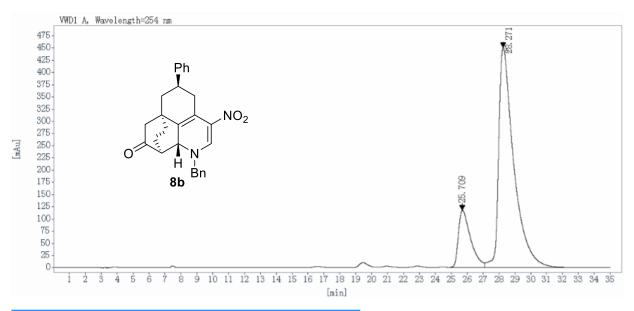


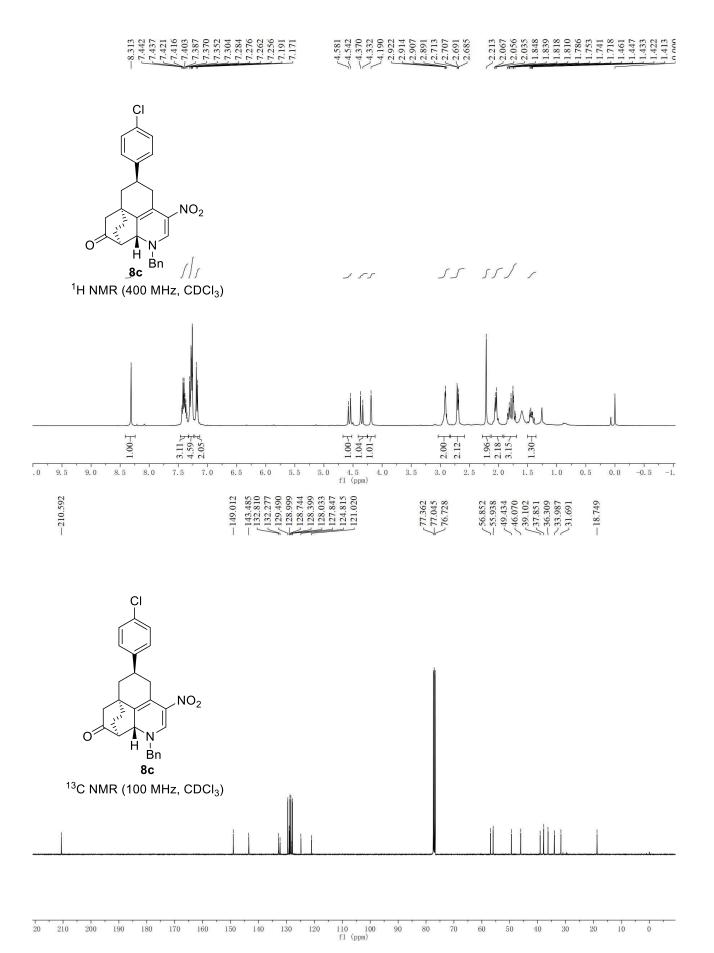

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
17.418	$_{ m BB}$	0.45	165.4417	4792.8354	49.1920
22.523	$_{ m BB}$	0.56	133.8709	4950.2793	50.8080
			Totals:	9743.1147	100.0000

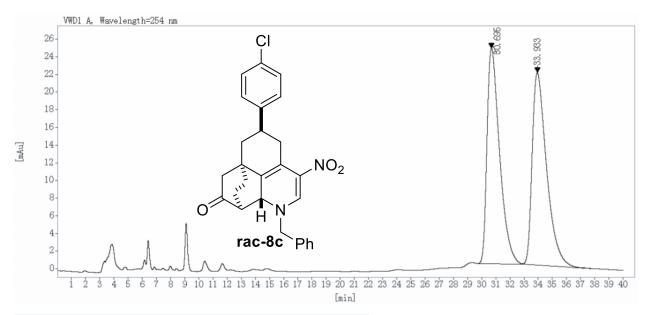



Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
17.366	$_{ m BB}$	0.42	26.7732	717.7877	9.3233
22.512	$^{\mathrm{BB}}$	0.64	159.1550	6981.0371	90.6767
			Totals:	7698.8248	100.0000

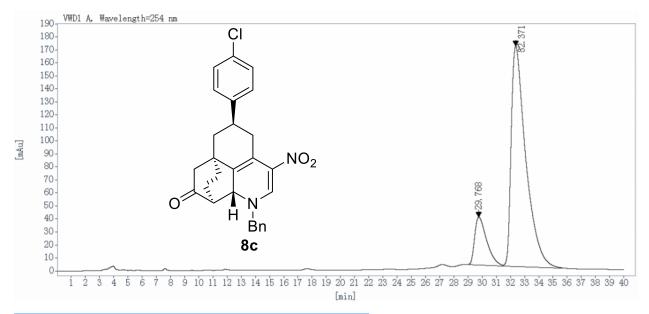




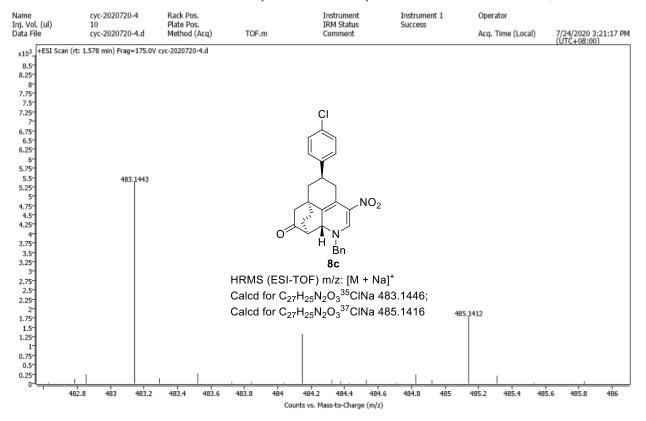

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
24.570	$_{ m BB}$	0.75	172.0205	8563.0547	50.1850
27.543	$_{ m BB}$	0.90	139.4481	8499.9150	49.8150
			Totals:	17062.9697	100.0000

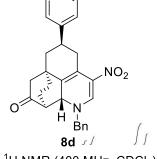


Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
25.709	$_{\mathrm{BV}}$	0.80	117.1124	6223.1846	17.3359
28.271	VB	0.96	450.8990	29674.5664	82.6641
			Totals:	35897.7510	100.0000

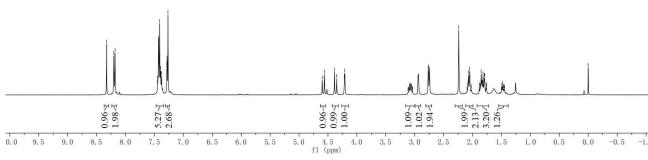


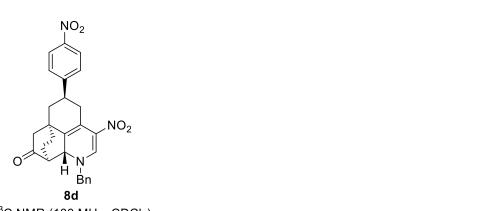
Name Inj. Vol. (ul)	cyc-20200614-10 10	Rack Pos. Plate Pos.	T05	Instrument IRM Status	Instrument 1 Success	Operator	C/10/2020 4-F7-20 DM
Data File	cyc-20200614-10.d	Method (Acq)	TOF.m	Comment		Acq. Time (Local)	6/18/2020 4:57:30 PM (UTC+08:00)
×10 ⁵ +ESI Scan (rt: 1	1.066 min) Frag=175.0V o	yc-20200614-10.d					
1.9-							
1.8-					449.18	40	
1.7-							
1.6-		Ph					
1.5-		Ţ					
1.4-							
1.3-			NO_2				
1.2-	[
1.1-	0	~/\\\					
1-		H∤ Bn					
0.9-		8b					
0.8-	HRMS (ES	SI-TOF) m/z:	[M + Na] ⁺				
0.7-		₂₇ H ₂₆ N ₂ O ₃ N					
0.6-	00000	27202 - 3					
0.5-							
0.4-							
0.3-							
0.2-							
0.1-							
والم							
448.75	448.8 448	.85 448.9	448.95 44	9 449.05 449 nts vs. Mass-to-Charge (m/z)	.1 449.15	149.2 449.25	449.3 449.35

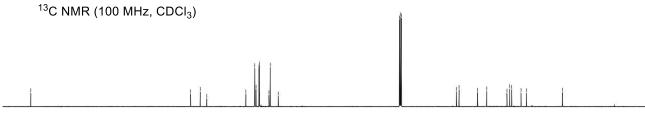



Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
30.695	BB	0.93	24.4035	1501.4353	49.3630
33.933	BB	1.06	21.7460	1540.1831	50.6370
			Totals:	3041.6184	100.0000

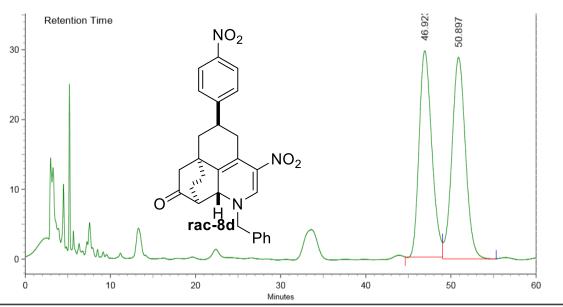
Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
29.768	BV	0.89	36.9707	2181.1409	15.1756
32.371	VB	1.06	169.8061	12191.5059	84.8244
			Totals:	14372,6467	100.0000



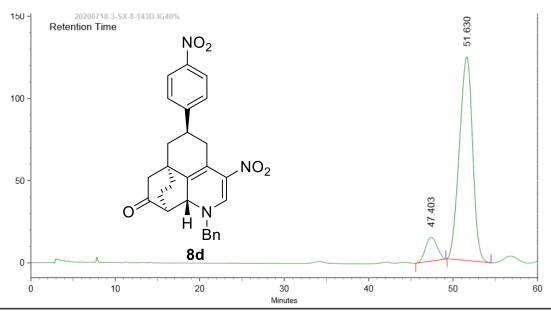

115 115 555 1


-18.702

¹H NMR (400 MHz, CDCl₃)

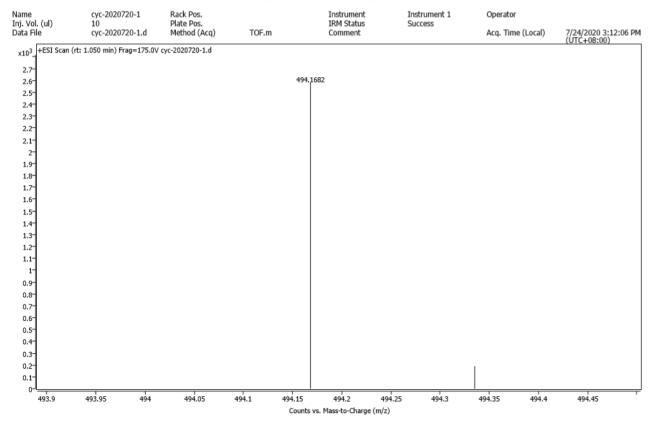


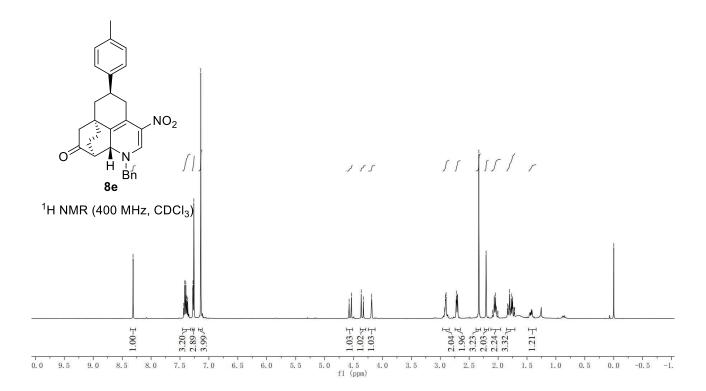
-210.161 -210.161 -152.585 -149.154 -146.794 -127.999 -127.999 -127.999 -127.999 -127.853 -12

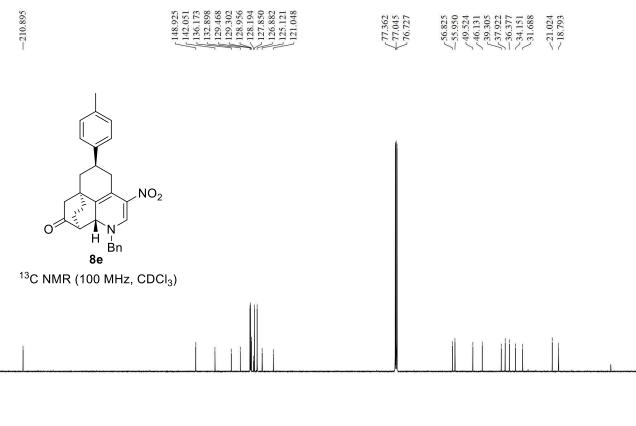

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

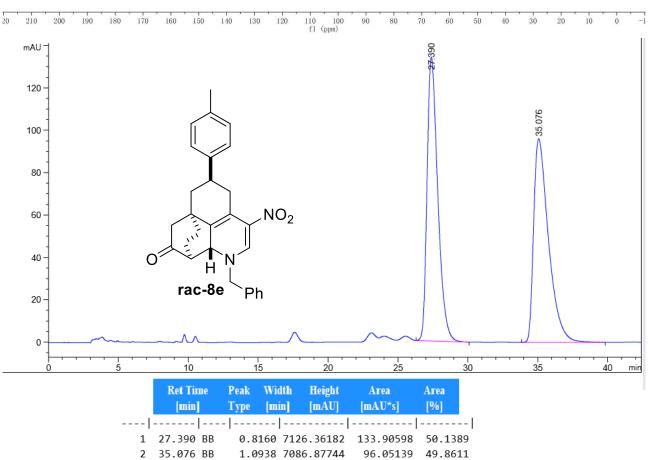
AREA PERCENT REPORT

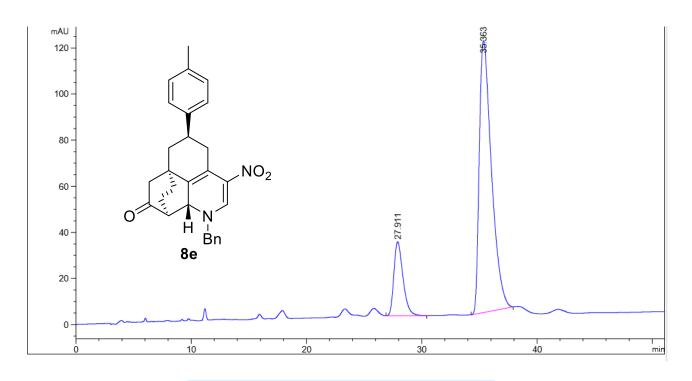
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	46.923	4.393	496230	51172685	48.8419
2	50.897	6.292	484622	53599499	51.1581

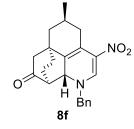

Totals				
		980852	104772184	100.0000

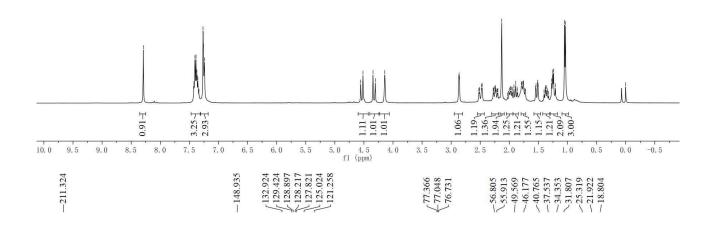

AREA PERCENT REPORT

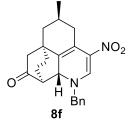

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	47.403	3.563	243369	23139177	9.2657
2	51.630	5.207	2081047	226590958	90.7343
Totals					
			2324416	249730135	100.0000

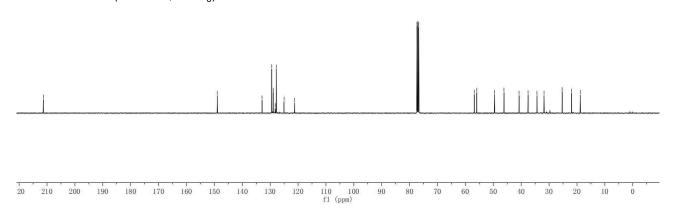


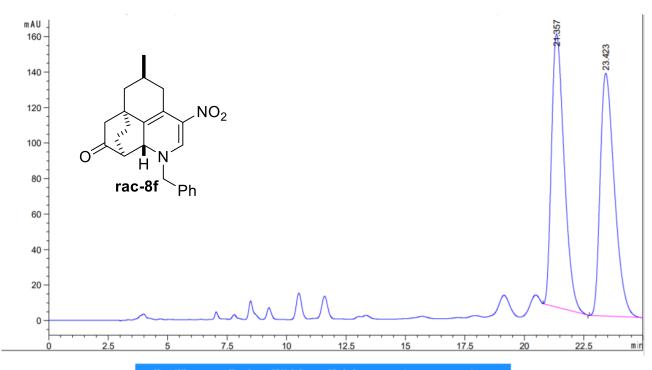


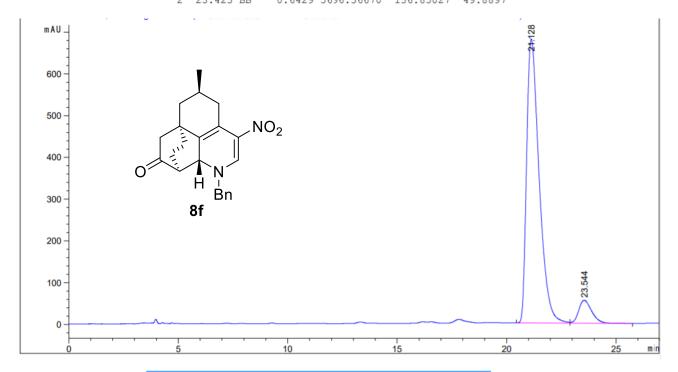



	Ret Time	Peak	Width	Height	Area	Area	
	[min]	Туре	[min]	[mAU]	[mAU*s]	[%]	
			-				
1	27.911 BB	0.	8303 1	765.22314	32.05513	16.95	47
2	35.363 BB	1.	1112 8	646.15820	117.78127	83.04	.53

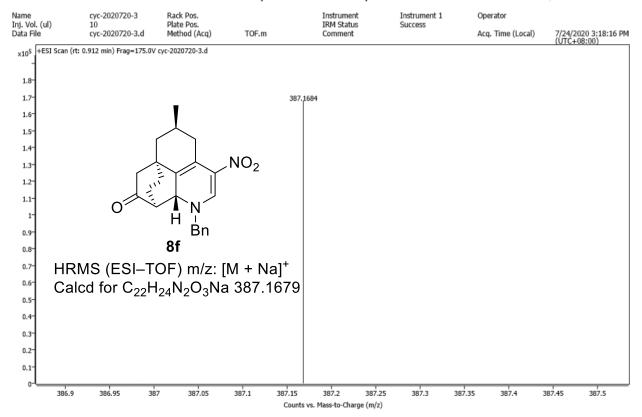

Spectrum Plot Report Agilent Trusted A cyc-2020720-2 10 Rack Pos. Plate Pos. Method (Acq) Name Inj. Vol. (ul) Data File Instrument IRM Status Comment Instrument 1 Success Operator cyc-2020720-2.d TOF.m 7/24/2020 3:15:15 PM (UTC+08:00) Acq. Time (Local) +ESI Scan (rt: 1.478 min) Frag=175.0V cyc-2020720-2.d ×10⁵ 1.1 1.05 463.1994 0.95 0.9 0.85 0.8 0.75 NO_2 0.65 0.6 0.55 0.5 Ь'n 0.45 8e 0.4 0.35 HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{28}N_2O_3Na$ 463.1992 0.3 0.25 0.2 0.15 0.1 0.05 462.7 462.9 462.5 463.1 463.2 463.3 Counts vs. Mass-to-Charge (m/z)

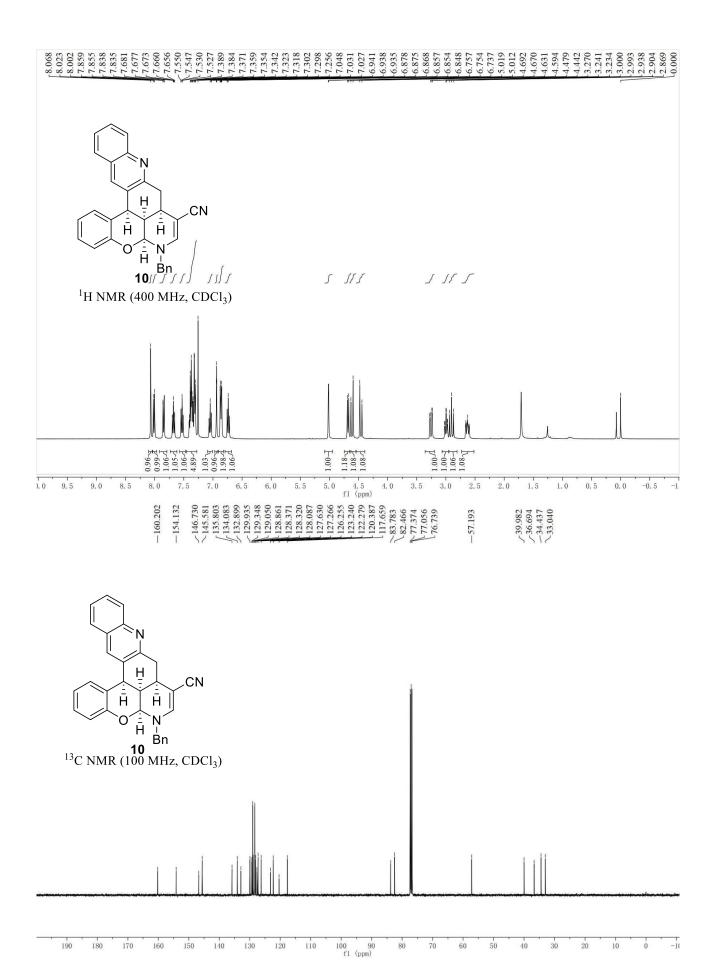

 1 H NMR (400 MHz, CDCl $_{3}$)

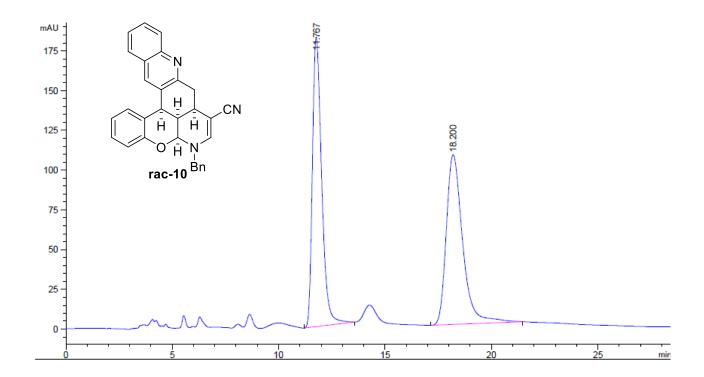

sss s 1 /1/1/1/1



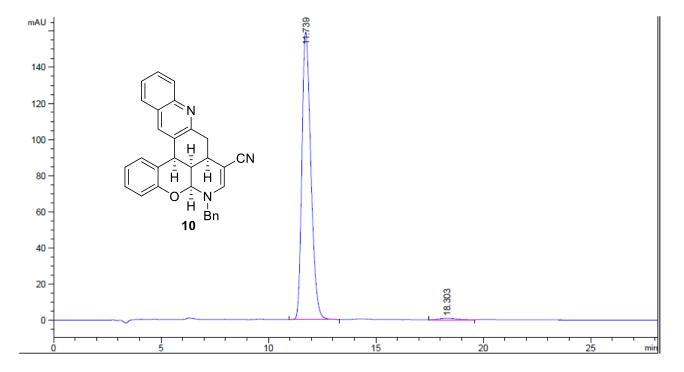
 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃)

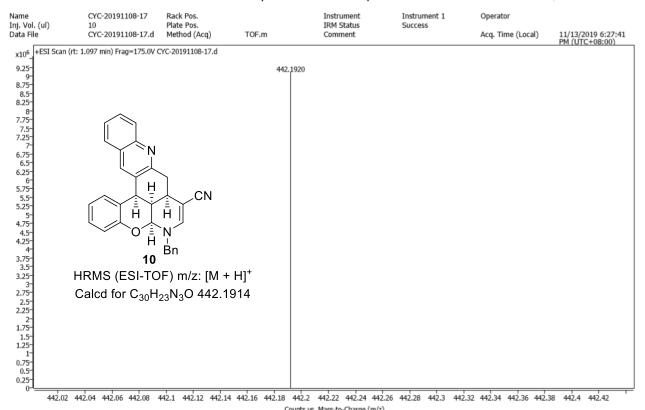


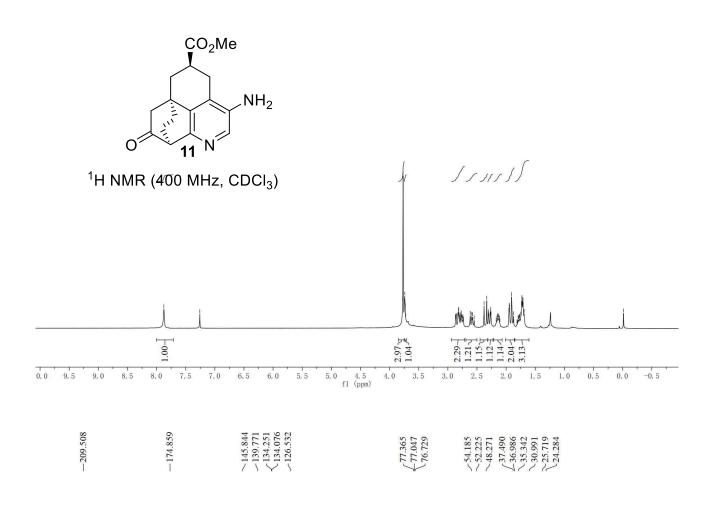

Ret T	lime	Peak	Width	Height	Area	Area
[mi	in]	Type	[min]	[mAU]	[mAU*s]	[%]
 -		-				
1	21.357	BB	0.5748	5721.55176	153.94864	50.1103
2	23 423	RR	0 6429	5696 36670	136 85027	49 8897

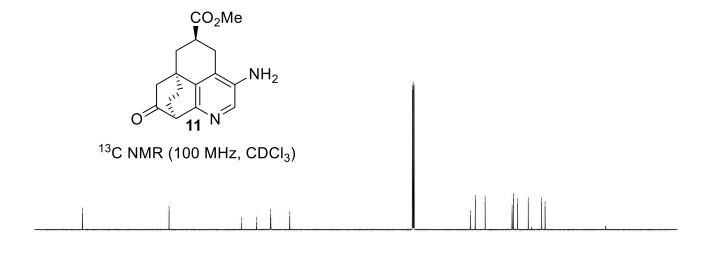


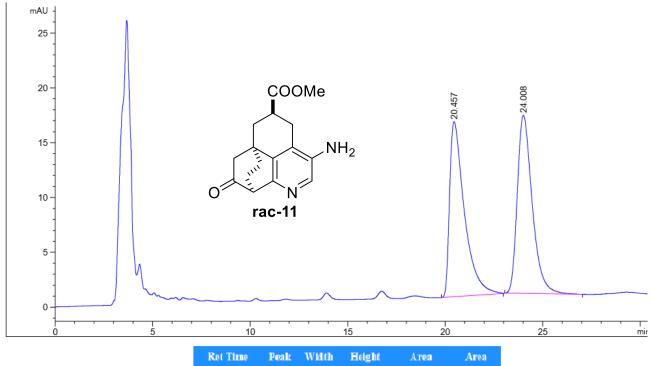
	Ret Time [min]		Peak Wid Type [mi			Area [mAU*s]	Area [%]
1	21.128	BV	0.6070	2.	.69933e4	680.37585	92.2822
2	23.544	VB	0.6343	22	257.52686	54.87917	7.7178

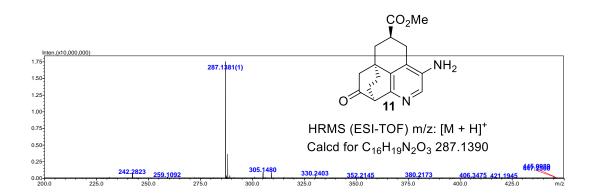



Ret Time	Peak	Width	Height	Area	Area
[min]	Type	[min]	[mAU]	[mAU*s]	[%]


- 1 11.767 BB 0.4628 5490.62695 181.93011 49.0860
- 2 18.200 BBA 0.8152 5695.10986 106.65697 50.9140




				Height [mAU]	Area [mAU*s]	
1						
1	11.739	BBA	0.4487	4611.46777	159.14609	99.2176
2	18.303	RR	0.6124	36, 36558	7.459556-1	9.7824



	[min]	Туре	[min]	[mAU]	[mAU*s]	[%]	
1	L 20.457	BB @	.7618	840.82062	15.95749	49.2	976
2	24.008	BB 6	.7926	864.78210	16.25152	50.7	024

	Ret Time	Peak	Width	Height	Area	Area	
	[min]	Type	[min]	[mAU]	[mAU*s]	[%]	
			-				-
1	20.714	BB 0.	7245 2	008.40002	40.27477	9.986	1
2	23.965 E	BB 0.	7969 1	.81035e4	336.33798	90.013	9

