Supporting Information

Uncovering the Relationship between Diameter and Height of Electrodeposited Lithium Protrusions in a Rigid Electrolyte

Alec S. Hoa,b, Pallab Baraic, Jacqueline A. Maslyna,b, Louise Frencka, Whitney S. Looa, Dilworth Y. Parkinsond, Venkat Srinivasanc, Nitash P. Balsaraa,b,e,*

a Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA

b Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA

c Argonne National Laboratory, Lemont, Illinois 60439, USA

d Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

e Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

* Corresponding author. E-mail: nbalsara@berkeley.edu, Phone: 1-510-642-8973.
Figure S1. The voltage versus time profiles of galvanostatically polarized lithium-SEO-lithium symmetric cells, taken from the cell with electrolyte thickness, (a) $L = 33 \, \mu m$, (b) $L = 41 \, \mu m$, (c) $L = 49 \, \mu m$, (d) $L = 51 \, \mu m$, (e) $L = 54 \, \mu m$, (f) $L = 77 \, \mu m$, (g) $L = 80 \, \mu m$, and (h) $L = 86 \, \mu m$. The
dashed line gives the applied current density, i, and the solid line gives the voltage response, V. Cells were occasionally paused during polarization for practical reasons such as removing a failed cell.