Supporting Information

Hierarchically Nanostructured Nickel–cobalt Alloy Supported on Nickel Foam as a Highly Efficient Electrocatalyst for Hydrazine Oxidation

Piao-Ping Tang, Xi Lin, Hui Yin, Deng-Xue Zhang, He Wen, Jia-Jun Wang and Ping Wang

School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, People’s Republic of China

* Corresponding author.
Tel: +86 20 3938 0583; E-mail address: mspwang@scut.edu.cn (P. Wang)

Number of pages: 14
Number of figures: 12
Number of tables: 1
Figure S1. (a,b) FE–SEM images at different magnifications of the hydrothermal sample.

Figure S2. (a–c) FE–SEM images at different magnifications of the one–step calcined sample at 300 °C under H₂ atmosphere for 1 h.
Figure S3. (a) LSV curves of Ni–Co/NF electrocatalysts prepared from the precursor mixtures with different Ni/Co molar ratios. The electrochemical tests were conducted in a solution containing 0.5 M N\textsubscript{2}H\textsubscript{4}·H\textsubscript{2}O and 1.0 M NaOH at a scan rate of 20 mV s-1. The inset shows a zoomed–in view of the onset potential region of the examined electrocatalysts. (b) Current density and onset potential of Ni–Co/NF electrocatalysts derived from figure a.
Figure S4. (a) LSV curves of Ni–Co/NF electrocatalysts that were annealed at different temperatures under reductive atmosphere. The electrochemical tests were conducted in a solution containing 0.5 M N₂H₄·H₂O and 1.0 M NaOH at a scan rate of 20 mV s⁻¹. The inset shows a zoomed–in view of the onset potential region of the examined electrocatalysts. (b) Current density and onset potential of Ni–Co/NF electrocatalysts derived from figure a.
Figure S5. FE–SEM images at different magnifications of (a–c) Ni/NF and (d–f) Co/NF catalysts.

Figure S6. (a–c) FE–SEM images at different magnifications of the Ni–Co/NF catalyst after 1000 CV cycles in a solution containing 3.0 M N$_2$H$_4$·H$_2$O and 1.0 M NaOH.
Figure S7. (a) Ni 2p and (b) Co 2p spectrum of the Ni–Co/NF sample before and after 1000 electrochemical cycling in a solution containing 3.0 M N₂H₄·H₂O and 1.0 M NaOH.
Figure S8. XRD pattern of the Ni–Co/NF catalyst after 1000 CV cycles in a solution containing 3.0 M N₂H₄·H₂O and 1.0 M NaOH.
Figure S9. A comparison of the LSV curves of the Ni−Co/NF catalyst in 1 M NaOH electrolyte with and without \(\text{N}_2\text{H}_4\cdot\text{H}_2\text{O} \) at a scan rate of 20 mV·s\(^{-1}\).

It was observed that the Ni−Co/NF catalyst showed no significant anodic current in 1.0 M NaOH solution at the applied potential condition, indicating that the high anodic current in 1.0 M NaOH + 0.5 M \(\text{N}_2\text{H}_4\cdot\text{H}_2\text{O} \) solution could be safely attributed to the hydrazine electrooxidation reaction.
Figure S10. LSV curves of the Ni−Co/NF catalyst before and after a long−term operation under 10mA cm−2. The electrochemical tests were conducted in a solution containing 0.5 M N₂H₄·H₂O and 1.0 M NaOH at a scan rate of 20 mV s⁻¹.
Figure S11. XRD patterns of the powdery samples that were peeled off from the Ni foam substrate of the Co/NF and Ni/NF catalysts.
Figure S12. Comparison of the LSV curves of Ni–Co/NF and the "state of the art" Ni$_2$P@Ni$_{10}$Mo/Ni–Mo–O/NF catalyst [13]. The electrochemical tests were conducted in a solution containing 0.5 M N$_2$H$_4$·H$_2$O and 1.0 M NaOH at a scan rate of 20 mV s$^{-1}$.
Table S1. A comparison of catalytic activities of various catalysts towards hydrazine electrooxidation.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Electrolyte [N$_2$H$_4$] and [NaOH] (M)</th>
<th>Electrocatalytic performance</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni−NSA/NF</td>
<td>1.0, 3.0</td>
<td>228</td>
<td>0.25</td>
</tr>
<tr>
<td>Cu–Ni/Cu foil</td>
<td>0.1, 3.0</td>
<td>300</td>
<td>0.45</td>
</tr>
<tr>
<td>Ni${0.6}$Co${0.4}$−ANS A/NF</td>
<td>0.5, 3.0</td>
<td>250</td>
<td>0.20</td>
</tr>
<tr>
<td>Ni−Zn/NF</td>
<td>0.1, 1.0</td>
<td>300</td>
<td>0.40</td>
</tr>
<tr>
<td>Ni−Zn/NF</td>
<td>0.1, 1.0</td>
<td>370</td>
<td>0.30</td>
</tr>
<tr>
<td>Pd−porous Ni/NF</td>
<td>0.1, 1.0</td>
<td>450</td>
<td>0.30</td>
</tr>
<tr>
<td>Ni$_2$P/NF</td>
<td>0.1, 1.0</td>
<td>220</td>
<td>0.10</td>
</tr>
<tr>
<td>Ni$_3$P/NF (DP)</td>
<td>0.1, 1.0</td>
<td>580</td>
<td>0.30</td>
</tr>
<tr>
<td>NiS$_2$/TiM</td>
<td>0.5, 1.0</td>
<td>300</td>
<td>0.22</td>
</tr>
<tr>
<td>CoNi−S/NF</td>
<td>2.0, 0.1</td>
<td>118</td>
<td>1.0</td>
</tr>
<tr>
<td>Ni−B/NF</td>
<td>0.1, 1.0</td>
<td>340</td>
<td>0.30</td>
</tr>
<tr>
<td>Ni$_3$N/Ni/NF</td>
<td>0.5, 1.0</td>
<td>623</td>
<td>0.30</td>
</tr>
<tr>
<td>Ni3P@Ni${10}$Mo/Ni−Mo−O/NF</td>
<td>0.5, 1.0</td>
<td>822</td>
<td>0.30</td>
</tr>
<tr>
<td>Ni−Co/NF</td>
<td>0.5, 1.0</td>
<td>1213</td>
<td>0.30</td>
</tr>
</tbody>
</table>

This work
References

